Êîðæèê Âîëîäèìèð Ïàâëîâè÷

(Korzhyk Volodymyr Pavlovych, Korzhik Vladimir Pavlovich)

Îñâ³òà: ×åðí³âåöüêèé äåðæàâíèé óí³âåðñèòåò (ñïåö³àëüí³ñòü - ô³çèêà, 1974)

Íàóêîâèé ñòóï³íü: äîêòîð ô³çèêî-ìàòåìàòè÷íèõ íàóê (01.01.08 – ìàòåìàòè÷íà ëîã³êà, òåîð³ÿ àëãîðèòì³â òà äèñêðåòíà ìàòåìàòèêà, 2010)

Â÷åíå çâàííÿ: ñòàðøèé íàóêîâèé ñï³âðîá³òíèê (1995)

Ïîñàäà: ïðîâ³äíèé íàóêîâèé ñï³âðîá³òíèê

 ²íñòèòóò³: ç 2008 ð.

Ïðîô³ë³ íàóêîâöÿ:

            ORCID:                                  https://orcid.org/0000-0001-8685-5648

            Scopus:                                   https://www.scopus.com/authid/detail.uri?authorId=7004132291

            Google Scholar:                     https://nbuviap.gov.ua/bpnu/bpnu_profile.php?bpnuid=BUN0007467

Îáëàñòü íàóêîâèõ ³íòåðåñ³â: òîïîëîã³÷íà òåîð³ÿ ãðàô³â

Íàïðÿì íàóêîâèõ äîñë³äæåíü: âèâ÷åííÿ âêëàäåíü òà çàíóðåíü ãðàô³â ó äâîâèì³ðí³ ïîâåðõí³

Îñíîâí³ íàóêîâ³ ðåçóëüòàòè:

 

1.     Äàíî áiëüø ïðîñòå i êîðîòêå äîâåäåííÿ òåîðåìè ïðî ðîçôàðáóâàííÿ êàðò íà äâîâèìiðíèõ íåîðiºíòîâíèõ ïîâåðõíÿõ.

2.     Äîâåäåíî, ùî º òàê³ êîíñòàíòè , ùî äëÿ êîæíîãî  º ùîíàéìåíøå  íåiçîìîðôíèõ îðiºíòîâíèõ i íåîð³ºíòîâíèõ ì³í³ìàëüíèõ âêëàäåíü ïîâíîãî ãðàôà  .

3.     Çíàéäåíî íåòðèâiàëüíó íèæíþ ìåæó äëÿ ìàêñèìàëüíî¿ âiäñòàíi ì³æ äâîìà òðèêóòíèìè âêëàäåííÿìè äåÿêèõ ïîâíèõ ãðàô³â.

4.     Çàñòîñîâóþ÷è ñèñòåìè òðiéîê Øòåéíåðà, ïîáóäîâàíî íåîð³ºíòîâí³ òðèêóòíi âêëàäåííÿ ïîâíèõ ãðàôiâ ç íåîáìåæåíî âåëèêîþ íåùiëüíiñòüþ.

5.     Çíàéäåíî ç òî÷íiñòþ äî äåñÿòè 1-õðîìàòè÷íå ÷èñëî êîæíî¿ ïîâåðõíi, îðiºíòîâíî¿ ÷è íåîðiºíòîâíî¿.

6.     Äîâåäåíî ³ñíóâàííÿ ïëàíàðíèõ ãðàô³â, ùî íå ìàþòü âëàñíèõ 2-çàíóðåíü ó ïëîùèíó.

7.     Çíàéäåíî ç òî÷íiñòþ äî îäèíèö³ 1-õðîìàòè÷íå ÷èñëî êîæíî¿ íåîð³ºíòîâíî¿ ïîâåðõí³ äîñòàòíüî âåëèêîãî ðîäó.

Äåÿê³ ç ïóáë³êàö³é:

1.          Korzhik V. All 2-planar graphs having the same spanning subgraph // The Art of Discrete and Applied Mathematics. – 2024.    V.  7.   P. 1 – 31. https://doi.org/10.26493/2590-9770.1632.16d (Scopus, 0.423, Q4)

2.          Korzhik V. A simple proof of the Map Color Theorem for nonorientable surfaces // Journal of Combinatorial Theory, Ser. B. – 2022. – Vol. 156. – P. 1–17. https://doi.org/10.1016/j.jctb.2022.03.004 (Scopus, 2.128, Q1)

3.          Korzhik V.   Planar graphs having no proper 2-immersions in the plane. I // Discrete Mathematics. – 2021.    V.  344. –  112482. – P. 1 – 26. (Scopus, 0.8,  Q1)

4.          Korzhik V.   Planar graphs having no proper 2-immersions in the plane. II // Discrete Mathematics. – 2021.    V.  344. –  112481. – P. 1 – 27. (Scopus, 0.8,  Q1)

1.          Korzhik V.   Planar graphs having no proper 2-immersions in the plane. III // Discrete Mathematics. – 2021.    V.  344. –  112516. – P. 1 – 15. (Scopus, 0.8,  Q1)

2.          Korzhik V.  A simple construction of exponentially many nonisomorphic orientable triangular embeddings of    // The Art of Discrete and Applied Mathematics. – 2021.    V.  4. – P. 1 – 7. (Scopus, Q2)

3.          Korzhik V.  Recursive constructions and nonisomorphic minimal nonorientable embeddings of complete graphs //  Discrete Mathematics – 2015. – V. 338. – P. 2186 – 2196.

4.          Korzhik V. Nonorientable biembeddings of cyclic Steiner triple systems generated by Scolem sequences // Discrete Mathematics – 2015. – V. 338. – P. 1345 – 1361.

5.          Korzhik V. Proper 1-immersions of graphs triangulating the plane // Discrete Mathematics. –  2013. –  V. 313. – P. 2673 – 2686.

6.          Korzhik V. Generating nonisomorphic quadrangular embeddings of a complete graph // Journal of Graph Theory. – 2013. – V.74. – P.133 –142.

7.          Korzhik V., Mohar B. Minimal obstructions for 1-immersions and hardness of 1-planarity testing // Journal of Graph Theory. 2013. – V. 72. – P. 30 – 70.

8.          Korzhik V. On the 1-chromatic number of nonorientable surfaces with large genus // Journal of Combinatorial Theory, Series B. – 2012. – V. 102. – P. 283 – 328.

9.          Korzhik V.  Exponentially many nonisomorphic genus embeddings of    // Discrete Mathematics. – 2010. – V. 310. – P. 2919 – 2924.

10.       Korzhik V.  Finite fields and the 1-chromatic number of orientable surfaces // Journal of Graph Theory. – 2010. – Vol. 63. – P. 179 – 184.

11.       Korzhik V.  Coloring vertices and faces of maps on surfaces // Discrete Mathematics. –  2010. –  V. 310. – P. 2504 – 2509.

12.       Korzhik V.  Complete triangulations of a given order generated from a multitude of nonisomorphic cubic graphs by current assignments // Journal of Graph Theory. – 2009. – V. 61. – P. 324 – 334.

13.       Grannell M., Korzhik V. Orientable biembeddings of cyclic Steiner triple  systems from   current assignments of the Mobius ladder graph // Discrete Mathematics. – 2009. – V. 309. –  P. 2847 – 2860.

14.       Korzhik V., Mohar B. Minimal obstructions for 1-immersions and hardness of 1-planarity testing // Graph Drawing 2008. – Lecture Notes in Computer Science. – V. 5417. – Berlin Heidelberg: SpringerVerlag. 2009. – P. 302 – 312.

15.       Korzhik V. Exponentially many nonisomorphic orientable triangular embeddings  of    // Discrete Mathematics. – 2009. – V. 309. – P. 852 –866.

16.       Korzhik V. Exponentially many nonisomorphic orientable triangular embeddings  of    //  Discrete Mathematics. – 2008. – V. 308. – P. 1046 – 1071.

17.       Korzhik V.,  Kwak Jin Ho. A new approach to constructing exponentially many nonisomorphic nonorientable triangular embeddings of complete graphs //  Discrete Mathematics. – 2008. – V. 308. – P. 1072 – 1079.

18.       Korzhik V. Minimal non-1-planar graphs //  Discrete Mathematics. – 2008. – V. 308. – P. 1319 – 1327.

19.       Korzhik V.,  Kwak Jin Ho. Nonorientable triangular embeddings of complete graphs with arbitrarily large looseness //  Discrete Mathematics. – 2008. – V. 308. – P. 3208 –  3212.

20.       Korzhik V. On the maximal distance between triangular embeddings of a complete graph // Journal of Combinatorial Theory, Ser. B. – 2006. – V. 96. – P. 426 – 435.

21.       Bennett G., Grannell M.,  Griggs T., Korzhik V.,  Siran J. Small surface trades in triangular embeddings // Discrete Mathematics. – 2006. – V. 306. – P. 2637 – 2646.

22.       Alekseyev V., Korzhik V. On the voltage-current transferring in topological graph theory // Ars Combinatoria. – 2005. – V. 74. – P. 331 – 349.

23.       Grannell M., Korzhik V. Nonorientable biembeddings of Steiner triple systems // Discrete Mathematics. – 2004. – V. 285. – P.121 – 126.

24.       Korzhik V., Voss H.-J.  Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs // Journal of Combinatorial Theory, Ser. B. – 2004. – V. 91. – P. 253 – 287.

25.       Grannell M.,  Griggs T., Korzhik V.,  Siran J.  On the minimal nonzero distance between triangular embeddings of a complete graph // Discrete Mathematics. – 2003. – V. 269. – P. 149 – 160.

26.       Korzhik V., Voss H.-J.  Exponential families of  nonisomorphic nontriangular orientable genus embeddings of complete graphs //  Journal of Combinatorial Theory, Ser. B. – 2002. – V. 86. – P.186 – 211.

27.       Korzhik V. Another proof of the Map Color Theorem for nonorientable surfaces // Journal of Combinatorial Theory, Ser. B. – 2002. – V. 86. – P. 221 – 253.

28.       Korzhik V., Voss H.-J.  On the number of nonisomorphic orientable regular embeddings of complete graphs  // Journal of Combinatorial Theory, Ser. B. – 2001. – V. 81. – P. 58 – 76.

29.       Korzhik V. Triangular embeddings of    with unboundedly large   // Discrete Mathematics. – 1998. – Vol. 190. – P. 149 – 162.

30.       Korzhik V. Nonadditivity of the 1-genus of a graph // Discrete Mathematics. – 1998. – V. 184. – P. 253 – 258.

31.       Korzhik V. An infinite series of surfaces with known 1-chromatic number // Journal of Combinatorial Theory, Ser. B. – 1998. – V. 72. – P. 80 – 90.

32.       Korzhik V. A possibly infinite series of surfaces with known 1-chromatic number  // Discrete Mathematics. – 1997. – V. 173. – P. 137 – 149.

33.       Korzhik V. A tighter bounding interval for the 1-chromatic number of a surface  // Discrete Mathematics. – 1997. – V. 169. –  P. 95 – 120.                 

34.       Korzhik V. A nonorientable triangular embedding of    ,   // Discrete Mathematics. – 1995. – V. 141. – P. 195  – 211.

35.       Korzhik V. A lower bound for the one-chromatic number  of a surface // Journal of Combinatorial Theory, Ser. B. – 1994. – V. 61. – P. 40 – 56.                 

36.       Harary F., Korzhik V., Lavrencenko S. Realizing the chromatic number of triangulations of surfaces // Discrete Mathematics. – 1993. – V. 123. – P. 197–204.

37.       Àëåêñååâ Â. Á., Êîðæèê Â. Ï. Âëîæåíèÿ ãðàôîâ â ïîâåðõíîñòè è òåîðèÿ ãðàôîâ òîêîâ // Äèñêðåòíàÿ ìàòåìàòèêà. – 1990. – Ò. 2 – Ñ. 123 – 141.

E-mail: korzhikvp@gmail.com