(Korzhyk Volodymyr Pavlovych, Korzhik Vladimir Pavlovich)
Íàóêîâèé ñòóï³íü: äîêòîð ô³çèêî-ìàòåìàòè÷íèõ íàóê (01.01.08 – ìàòåìàòè÷íà ëîã³êà, òåîð³ÿ àëãîðèòì³â òà äèñêðåòíà ìàòåìàòèêà, 2010)
Â÷åíå çâàííÿ: ñòàðøèé íàóêîâèé ñï³âðîá³òíèê (1995)
Ïîñàäà: ïðîâ³äíèé íàóêîâèé ñï³âðîá³òíèê
 ²íñòèòóò³: ç 2008 ð.
Ïðîô³ë³ íàóêîâöÿ:
ORCID: https://orcid.org/0000-0001-8685-5648
Scopus: https://www.scopus.com/authid/detail.uri?authorId=7004132291
Google Scholar: https://nbuviap.gov.ua/bpnu/bpnu_profile.php?bpnuid=BUN0007467
Îáëàñòü íàóêîâèõ ³íòåðåñ³â: òîïîëîã³÷íà òåîð³ÿ ãðàô³â
Íàïðÿì íàóêîâèõ äîñë³äæåíü: âèâ÷åííÿ âêëàäåíü òà çàíóðåíü ãðàô³â ó äâîâèì³ðí³ ïîâåðõí³
Îñíîâí³ íàóêîâ³
ðåçóëüòàòè:
1. Äàíî áiëüø ïðîñòå i êîðîòêå äîâåäåííÿ òåîðåìè ïðî ðîçôàðáóâàííÿ êàðò íà äâîâèìiðíèõ íåîðiºíòîâíèõ ïîâåðõíÿõ.
2.
Äîâåäåíî, ùî º òàê³ êîíñòàíòè , ùî äëÿ êîæíîãî
º ùîíàéìåíøå
íåiçîìîðôíèõ
îðiºíòîâíèõ i íåîð³ºíòîâíèõ ì³í³ìàëüíèõ
âêëàäåíü ïîâíîãî ãðàôà
.
3.
Çíàéäåíî íåòðèâiàëüíó íèæíþ ìåæó äëÿ ìàêñèìàëüíî¿ âiäñòàíi ì³æ äâîìà òðèêóòíèìè
âêëàäåííÿìè äåÿêèõ ïîâíèõ ãðàô³â.
4.
Çàñòîñîâóþ÷è ñèñòåìè òðiéîê Øòåéíåðà,
ïîáóäîâàíî íåîð³ºíòîâí³ òðèêóòíi âêëàäåííÿ ïîâíèõ ãðàôiâ ç íåîáìåæåíî âåëèêîþ íåùiëüíiñòüþ.
5.
Çíàéäåíî ç òî÷íiñòþ äî äåñÿòè 1-õðîìàòè÷íå ÷èñëî êîæíî¿ ïîâåðõíi,
îðiºíòîâíî¿ ÷è íåîðiºíòîâíî¿.
6. Äîâåäåíî ³ñíóâàííÿ ïëàíàðíèõ ãðàô³â, ùî íå ìàþòü âëàñíèõ 2-çàíóðåíü ó ïëîùèíó.
7. Çíàéäåíî ç òî÷íiñòþ äî îäèíèö³ 1-õðîìàòè÷íå ÷èñëî êîæíî¿ íåîð³ºíòîâíî¿ ïîâåðõí³ äîñòàòíüî âåëèêîãî ðîäó.
Äåÿê³ ç ïóáë³êàö³é:
1.
Korzhik V. All 2-planar graphs having the
same spanning subgraph //
The Art of Discrete and Applied Mathematics. – 2024. – V. 7. – P. 1 – 31.
https://doi.org/10.26493/2590-9770.1632.16d (Scopus, 0.423, Q4)
2.
Korzhik V. A simple
proof of the
Map Color Theorem
for nonorientable surfaces
// Journal of Combinatorial Theory,
Ser. B. – 2022. – Vol. 156. – P. 1–17. https://doi.org/10.1016/j.jctb.2022.03.004 (Scopus, 2.128, Q1)
3.
Korzhik V. Planar
graphs having no
proper 2-immersions in the plane.
I // Discrete Mathematics. – 2021. –
V. 344. – 112482. – P. 1 – 26. (Scopus,
0.8, Q1)
4.
Korzhik V. Planar
graphs having no
proper 2-immersions in the plane.
II // Discrete Mathematics. – 2021. –
V. 344. – 112481. – P. 1 – 27. (Scopus,
0.8, Q1)
1.
Korzhik V. Planar
graphs having no
proper 2-immersions in the plane.
III // Discrete Mathematics. – 2021. –
V. 344. – 112516. – P. 1 – 15. (Scopus,
0.8, Q1)
2.
Korzhik V. A simple
construction of exponentially many
nonisomorphic orientable triangular embeddings
of // The
Art of Discrete
and Applied Mathematics.
– 2021. – V. 4.
– P. 1 – 7. (Scopus, Q2)
3.
Korzhik V. Recursive
constructions and nonisomorphic minimal
nonorientable embeddings of complete
graphs // Discrete
Mathematics – 2015. – V.
338. – P. 2186 – 2196.
4.
Korzhik V. Nonorientable biembeddings of
cyclic Steiner triple
systems generated by
Scolem sequences // Discrete
Mathematics – 2015. – V.
338. – P. 1345 – 1361.
5.
Korzhik V. Proper 1-immersions of graphs triangulating
the plane // Discrete
Mathematics. – 2013. –
V. 313. – P. 2673 – 2686.
6.
Korzhik V. Generating nonisomorphic quadrangular
embeddings of a complete graph
// Journal of Graph Theory.
– 2013. – V.74. – P.133 –142.
7.
Korzhik V., Mohar B. Minimal obstructions
for 1-immersions and hardness of
1-planarity testing // Journal of Graph
Theory. 2013. – V. 72. – P.
30 – 70.
8.
Korzhik V. On the 1-chromatic number of
nonorientable surfaces with large
genus // Journal of Combinatorial
Theory, Series B. – 2012. – V. 102. – P. 283 – 328.
9.
Korzhik V. Exponentially
many nonisomorphic genus
embeddings of // Discrete
Mathematics. – 2010. – V.
310. – P. 2919 – 2924.
10. Korzhik V. Finite
fields and the
1-chromatic number of orientable surfaces
// Journal of Graph Theory.
– 2010. – Vol. 63. – P. 179
– 184.
11. Korzhik V. Coloring
vertices and faces of
maps on surfaces
// Discrete Mathematics. – 2010. –
V. 310. – P. 2504 – 2509.
12. Korzhik V. Complete
triangulations of a given order
generated from a multitude of
nonisomorphic cubic graphs by
current assignments // Journal of
Graph Theory. – 2009. – V. 61. – P. 324 – 334.
13. Grannell M., Korzhik V. Orientable biembeddings
of cyclic Steiner
triple systems
from current
assignments of the Mobius
ladder graph // Discrete
Mathematics. – 2009. – V.
309. – P. 2847 – 2860.
14. Korzhik V., Mohar B. Minimal obstructions
for 1-immersions and hardness of
1-planarity testing // Graph Drawing 2008. – Lecture Notes
in Computer Science.
– V. 5417. – Berlin Heidelberg: Springer – Verlag.
2009. – P. 302 – 312.
15. Korzhik V. Exponentially many nonisomorphic
orientable triangular embeddings of // Discrete
Mathematics. – 2009. – V.
309. – P. 852 –866.
16. Korzhik V. Exponentially many nonisomorphic
orientable triangular embeddings of // Discrete Mathematics. – 2008. – V. 308. – P. 1046 – 1071.
17. Korzhik V., Kwak
Jin Ho. A new
approach to constructing exponentially
many nonisomorphic nonorientable
triangular embeddings of complete
graphs // Discrete
Mathematics. – 2008. – V.
308. – P. 1072 – 1079.
18. Korzhik V. Minimal non-1-planar graphs // Discrete
Mathematics. – 2008. – V.
308. – P. 1319 – 1327.
19. Korzhik V., Kwak
Jin Ho. Nonorientable
triangular embeddings of complete
graphs with arbitrarily
large looseness // Discrete Mathematics. – 2008. – V. 308. – P. 3208 – 3212.
20. Korzhik V. On the maximal
distance between triangular embeddings
of a complete graph
// Journal of Combinatorial Theory,
Ser. B. – 2006. – V. 96. –
P. 426 – 435.
21. Bennett G., Grannell M., Griggs
T., Korzhik V., Siran
J. Small surface trades in
triangular embeddings // Discrete Mathematics.
– 2006. – V. 306. – P. 2637 – 2646.
22. Alekseyev V., Korzhik V. On the
voltage-current transferring
in topological graph
theory // Ars Combinatoria. – 2005. – V. 74. – P. 331 – 349.
23. Grannell M., Korzhik V. Nonorientable biembeddings
of Steiner triple
systems // Discrete Mathematics. – 2004. – V. 285. – P.121 – 126.
24. Korzhik V., Voss H.-J. Exponential
families of nonisomorphic nonorientable
genus embeddings of
complete graphs // Journal of
Combinatorial Theory, Ser. B. – 2004. – V. 91. – P. 253 – 287.
25. Grannell M., Griggs
T., Korzhik V., Siran
J. On the
minimal nonzero distance
between triangular embeddings
of a complete graph
// Discrete Mathematics. – 2003. – V. 269. –
P. 149 – 160.
26. Korzhik V., Voss H.-J. Exponential
families of nonisomorphic
nontriangular orientable genus embeddings
of complete graphs
// Journal of
Combinatorial Theory, Ser. B. – 2002. – V. 86. – P.186 – 211.
27. Korzhik V. Another proof of
the Map Color
Theorem for nonorientable
surfaces // Journal of Combinatorial
Theory, Ser. B. – 2002. – V. 86. – P. 221 – 253.
28. Korzhik V., Voss H.-J. On
the number of
nonisomorphic orientable regular embeddings
of complete graphs // Journal
of Combinatorial Theory,
Ser. B. – 2001. – V. 81. –
P. 58 – 76.
29. Korzhik V. Triangular embeddings of with
unboundedly large
// Discrete
Mathematics. – 1998. – Vol. 190. – P. 149 – 162.
30. Korzhik V. Nonadditivity of the
1-genus of a graph // Discrete Mathematics.
– 1998. – V. 184. – P. 253 – 258.
31. Korzhik V. An infinite series
of surfaces with
known 1-chromatic number // Journal of
Combinatorial Theory, Ser. B. – 1998. – V. 72. – P. 80 – 90.
32. Korzhik V. A possibly infinite series
of surfaces with
known 1-chromatic number // Discrete
Mathematics. – 1997. – V.
173. – P. 137 – 149.
33. Korzhik V. A tighter bounding interval
for the 1-chromatic number of
a surface // Discrete
Mathematics. – 1997. – V.
169. – P. 95 – 120.
34. Korzhik V. A nonorientable triangular embedding
of ,
// Discrete Mathematics. – 1995. – V. 141. – P. 195 – 211.
35. Korzhik V. A lower bound for
the one-chromatic number of
a surface // Journal of Combinatorial
Theory, Ser. B. – 1994. – V. 61. – P. 40 – 56.
36. Harary F., Korzhik V., Lavrencenko S. Realizing the
chromatic number of triangulations
of surfaces // Discrete
Mathematics. – 1993. – V.
123. – P. 197–204.
37. Àëåêñååâ Â. Á., Êîðæèê Â.
Ï. Âëîæåíèÿ ãðàôîâ â ïîâåðõíîñòè è òåîðèÿ
ãðàôîâ òîêîâ // Äèñêðåòíàÿ
ìàòåìàòèêà. – 1990. – Ò. 2 – Ñ. 123 – 141.
E-mail: korzhikvp@gmail.com