Education:
Scientific degree: Doctor of sciences in physics and mathematics (01.01.08 – mathematical logic, algorithm theory and discrete mathematics, 2010).
Scientific title: Senior Research Fellow (since 1995).
Position: Leading Research Fellow.
In Institute: from
2008
Scientific profiles
ORCID: https://orcid.org/0000-0001-8685-5648
Scopus: https://www.scopus.com/authid/detail.uri?authorId=7004132291
Google Scholar: https://nbuviap.gov.ua/bpnu/bpnu_profile.php?bpnuid=BUN0007467
Research interests: topological graph theory: studying embeddings and immersions of graphs in two-dimensional surfaces
Main scientific results:
1.
A simple proof of the Map Color Theorem for nonorientable surfaces.
2.
It is shown that there are constants such that for every
the complete
graph
has at least
nonisomorphic orientable and nonorientable minimal embeddings.
3. A nontrivial lower bound on the maximal distance between two triangular embeddings of some complete graphs is found.
4. Using Steiner triple systems, nonorientable triangular embeddings of complete graphs with unboundedly large looseness are constructed.
5. The 1-chromatic number of every surface, orientable or nonorientable, is found up to 10.
6. It is shown that there are planar graphs having no proper 2-immersions in the plane.
7. The 1-chromatic number of every nonorientable surface with large genus is found up to 1.
Major publications:
1.
Korzhik V. All 2-planar graphs having the
same spanning subgraph // The Art of Discrete and
Applied Mathematics. – 2024. – V. 7. – P. 1 – 31. https://doi.org/10.26493/2590-9770.1632.16d
(Scopus, 0.423, Q4)
2.
Korzhik
V. A simple proof of the Map
Color Theorem for nonorientable surfaces // Journal of Combinatorial Theory, Ser. B. – 2022. – Vol. 156. – P. 1–17. https://doi.org/10.1016/j.jctb.2022.03.004 (Scopus, 2.128, Q1)
3.
Korzhik V. Planar graphs having no
proper 2-immersions in the plane. I // Discrete Mathematics. –
2021. –
V. 344. – 112482. – P. 1 – 26. (Scopus, 0.8,
Q1)
1.
Korzhik V. Planar graphs having no
proper 2-immersions in the plane. II // Discrete Mathematics. –
2021. –
V. 344. – 112481. – P. 1 – 27. (Scopus,
0.8, Q1)
2.
Korzhik V. Planar graphs having no
proper 2-immersions in the plane. III // Discrete Mathematics. –
2021. –
V. 344. – 112516. – P. 1 – 15. (Scopus,
0.8, Q1)
3.
Korzhik V. A simple construction of exponentially many nonisomorphic orientable triangular embeddings of // The
Art of Discrete
and Applied Mathematics. – 2021.
– V. 4. – P. 1 – 7. (Scopus, Q2)
4.
Korzhik V. Recursive constructions and nonisomorphic minimal nonorientable embeddings of complete graphs
// Discrete Mathematics – 2015. – V. 338. – P. 2186 – 2196.
5.
Korzhik V. Nonorientable biembeddings of cyclic Steiner
triple systems generated by Scolem
sequences // Discrete Mathematics – 2015. – V. 338. – P. 1345 – 1361.
6.
Korzhik V. Proper 1-immersions of graphs triangulating the plane // Discrete
Mathematics. –
2013. – V. 313. – P. 2673 – 2686.
7.
Korzhik V. Generating nonisomorphic quadrangular embeddings of a complete graph
// Journal of Graph Theory. – 2013. – V.74. –
P.133 –142.
8.
Korzhik V., Mohar B. Minimal obstructions for 1-immersions and hardness of
1-planarity testing // Journal
of Graph Theory. 2013. – V. 72. – P. 30 – 70.
9.
Korzhik V. On the 1-chromatic number of nonorientable
surfaces with large genus // Journal of Combinatorial
Theory, Series B. – 2012. –
V. 102. – P. 283 – 328.
10.
Korzhik V. Exponentially many nonisomorphic genus embeddings of // Discrete
Mathematics. – 2010. – V. 310. – P. 2919 – 2924.
11.
Korzhik V. Finite fields and the
1-chromatic number of orientable surfaces // Journal of Graph
Theory. – 2010. – Vol. 63.
– P. 179 – 184.
12.
Korzhik V. Coloring vertices and faces
of maps on
surfaces // Discrete Mathematics. – 2010.
– V. 310. – P. 2504 – 2509.
13.
Korzhik V. Complete triangulations of a given order generated
from a multitude of nonisomorphic cubic graphs by
current assignments // Journal of Graph
Theory. – 2009. – V. 61. – P. 324 – 334.
14.
Grannell M., Korzhik V. Orientable biembeddings of cyclic Steiner triple systems from current assignments of the Mobius ladder
graph // Discrete Mathematics. – 2009. – V. 309. – P. 2847 – 2860.
15.
Korzhik V., Mohar B. Minimal obstructions for 1-immersions and hardness of
1-planarity testing // Graph
Drawing 2008. – Lecture Notes in Computer
Science. – V. 5417. – Berlin
Heidelberg: Springer – Verlag. 2009. – P. 302 – 312.
16.
Korzhik V. Exponentially many nonisomorphic orientable triangular embeddings of // Discrete
Mathematics. – 2009. – V. 309. – P. 852 –866.
17.
Korzhik V. Exponentially many nonisomorphic orientable triangular embeddings of // Discrete Mathematics. – 2008. – V. 308. – P. 1046 – 1071.
18.
Korzhik V., Kwak Jin Ho. A new
approach to constructing exponentially many nonisomorphic nonorientable triangular embeddings of complete
graphs // Discrete Mathematics. – 2008. –
V. 308. – P. 1072 – 1079.
19.
Korzhik V. Minimal non-1-planar graphs
// Discrete Mathematics. – 2008. – V. 308. – P. 1319 – 1327.
20.
Korzhik V., Kwak Jin Ho. Nonorientable
triangular embeddings of complete graphs
with arbitrarily large looseness // Discrete Mathematics. – 2008. – V. 308. – P. 3208 – 3212.
21.
Korzhik V. On the maximal
distance between triangular embeddings of a complete graph
// Journal of Combinatorial Theory, Ser. B. – 2006. – V. 96. – P. 426 – 435.
22.
Bennett G., Grannell M., Griggs T., Korzhik V., Siran J. Small surface trades
in triangular embeddings // Discrete Mathematics. – 2006. – V. 306. – P. 2637 – 2646.
23.
Alekseyev V., Korzhik V. On the
voltage-current transferring in
topological graph theory // Ars Combinatoria.
– 2005. – V. 74. – P. 331 – 349.
24.
Grannell M., Korzhik V. Nonorientable biembeddings of Steiner triple systems // Discrete Mathematics. – 2004. – V. 285. – P.121 – 126.
25.
Korzhik V., Voss H.-J. Exponential families of nonisomorphic nonorientable genus embeddings of complete
graphs // Journal of Combinatorial Theory, Ser. B. – 2004. – V. 91.
– P. 253 – 287.
26.
Grannell M., Griggs T., Korzhik V., Siran J. On the minimal
nonzero distance between triangular embeddings of a complete graph // Discrete Mathematics. – 2003. –
V. 269. – P. 149 – 160.
27.
Korzhik V., Voss H.-J. Exponential families of nonisomorphic nontriangular orientable genus embeddings of complete
graphs // Journal of Combinatorial
Theory, Ser. B. – 2002. –
V. 86. – P.186 – 211.
28.
Korzhik V. Another proof of
the Map Color
Theorem for nonorientable surfaces // Journal of Combinatorial
Theory, Ser. B. – 2002. –
V. 86. – P. 221 – 253.
29.
Korzhik V., Voss H.-J. On the number
of nonisomorphic orientable regular embeddings of complete
graphs // Journal of Combinatorial
Theory, Ser. B. – 2001. –
V. 81. – P. 58 – 76.
30.
Korzhik V. Triangular embeddings of with unboundedly large
// Discrete
Mathematics. – 1998. – Vol.
190. – P. 149 – 162.
31.
Korzhik V. Nonadditivity of the 1-genus of a graph // Discrete Mathematics. – 1998. – V. 184. – P. 253 – 258.
32.
Korzhik V. An infinite series
of surfaces with known 1-chromatic number // Journal of Combinatorial Theory, Ser. B. – 1998. – V. 72.
– P. 80 – 90.
33.
Korzhik V. A possibly infinite series of surfaces
with known 1-chromatic number // Discrete Mathematics. – 1997. –
V. 173. – P. 137 – 149.
34.
Korzhik V. A tighter bounding interval for the
1-chromatic number of a surface // Discrete Mathematics. – 1997. –
V. 169. – P. 95 – 120.
35.
Korzhik V. A nonorientable triangular embedding of ,
// Discrete
Mathematics. – 1995. – V. 141. – P. 195 – 211.
36.
Korzhik V. A lower bound for
the one-chromatic number of a surface // Journal of Combinatorial
Theory, Ser. B. – 1994. –
V. 61. – P. 40 – 56.
37.
Harary F., Korzhik V., Lavrencenko S. Realizing the chromatic
number of triangulations of surfaces // Discrete Mathematics. – 1993. – V. 123. – P. 197–204.
38.
Àëåêñååâ Â. Á., Êîðæèê Â.
Ï. Âëîæåíèÿ ãðàôîâ â ïîâåðõíîñòè è òåîðèÿ ãðàôîâ òîêîâ // Äèñêðåòíàÿ ìàòåìàòèêà. – 1990. – Ò. 2 – Ñ. 123 – 141.
E-mail: korzhikvp@gmail.com