The conference of young scientists «Pidstryhach readings – 2022» May 25–27, 2022, Lviv

UDC 111.11

Verbal width by set of squares in alternating group A_n and Mathieu groups, criterions of quadraticity in $PSL_2(F_p), GL_2(F_p)$

Ruslan Skuratovskii

National Aviation University, ruslan.skuratovskii@nau.edu.ua, ruslan@imath.kiev.ua

The width of a verbal subgroup V(G, W) [1] over a set W is equal to a least value $m \in \mathbb{N} \cup \{\infty\}$ such that every element from V(G, W) can be represented as the product of at most m values of words from W.

In a group G, the set of squares of its elements is denoted by $\mathbb{S}(G)$. We consider the set of all squares $\mathbb{S}(A_n)$ of the alternating group A_n as a generating set for A_n [2].

Theorem 1. The set of all squares $S(A_n)$ from A_n does not coincide with the whole alternating group A_n and does not form a proper subgroup of A_n . The set $S(A_n)$ is generating set for A_n . The verbal width of $V(A_n, S(A_n)) = 2$ for n > 3.

Lemma 1. An arbitrary element $g \in A_n$ having the cyclic structure $[(2k)^1, (2r)^1]$ can be presented in the form of a product of 2 squares of $h_1, h_2 \in A_n$ with 2 joint letters in their cyclic presentation on n-letters alphabet, 2k + 2r - 2 ways.

Theorem 2. If in cyclic structure of $g \in A_n$ every even cycle appears an even number of times, i.e. $m_{2k} \equiv 0 \pmod{2}$, and at least one of the two following conditions holds:

1)

$$\begin{bmatrix} |Fix(g)| > 1 & (a) \\ \max_{k \in N} (m_{2k-1}) > 1, & (b) \end{bmatrix}$$

2) $\sum_{l=1}^{L} p_{2l} \equiv 0 \pmod{2}$,

then this g can be presented as $g = h^2$, $h \in A_n$. The vice versa is also true. The condition $m_{2l} \equiv 0 \pmod{2}$ is sufficient and necessary in S_n .

Theorem 3. Let $A \in PSL_2(F_p)$, where \mathbb{F}_p is some field, and eigenvalues of A has algebraic multiplicity equal to geometric multiplicity, then for a matrix A, there is a matrix $B \in PSL_2(F_p)$ such that

$$B^2 = A$$

http://www.iapmm.lviv.ua/chyt2022

The conference of young scientists «Pidstryhach readings – 2022» May 25–27, 2022, Lviv

if and only if, tr(A) + 2 or -tr(A) + 2 is a quadratic residue in \mathbb{F}_p .

Theorem 4. Under conditions $(\frac{\lambda}{p}) = 1$ in F_p and matrix A is similar to a Jordan block of the form

$$J_A = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)$$

i.e. A is simple matrix, a square root B of A exists in $PSL_2(F_p)$.

The following criterion to be square for semisimple matrix in $GL_2(F_p)$ is found.

Theorem 5. If a matrix $A \in GL_2(F_p)$ is semisimple with non multiples eigenvalues, then square root $\sqrt{A} \in GL_2(F_p)$ iff $(\frac{\lambda_i}{p}) = 1$, where $1 \le i \le 2$, in F_{p^2} .

The problem of recognition of square in S_n with using presentation of word in involutive type ray-like generating set $T = \{(1,2); (2,3); \ldots; (n-1,n)\}$ is solved analogous problem for A_n and Mitsuhashi's generating set is considered.

Theorem 6. The verbal width of the verbal subgroups generated by squares of the following M_8, M_9, M_{10} Mathieu groups are equal to 1. The structure of $V(\mathbb{S}(M_9), M_9)$ is $(C_3 \times C_3) \rtimes C_2$.

Theorem 7. The following Mathieu groups M_{11} , M_{12} , M_{20} , M_{21} , M_{22} , M_{23} and M_{24} have the verbal width $vw(M_{ij}, \mathbb{S}(M_{ij})) = 2$.

- D. Z. Kagan. The width of verbal subgroups in anomalous products. The width of verbal subgroups in anomalous products. Scientific news. Series Mathematics. Physics. vol. 255: 6. Issue 46 (2017), P. 24-29.
- R. V. Skuratovskii. On commutator subgroups of Sylow 2-subgroups of the alternating group, and the commutator width in wreath products. / Ruslan V. Skuratovskii // European Journal of Mathematics. vol. 7: 1. (2021), P. 353-373. doi.org/10.1007/s40879-020-00418-9.

Вербальна ширина над множиною квадратів у знакозмінній групі і групах Матьє, критерій квадратичності в $PSL_2(F_p)$, $GL_2(F_p)$.

 $Ukrainian \ annotation$

Знайдено вербальну ширину по множині квадратів для знакозмінної групи і груп Матьє. Доведені критерії квадратичності для груп A_n , $PSL_2(F_p)$ і $GL_2(F_p)$.