The conference of young scientists «Pidstryhach readings - 2022» May 25-27, 2022, Lviv

UDC 111.11

Verbal width by set of squares in alternating group A_{n} and Mathieu groups, criterions of quadraticity in
 $P S L_{2}\left(F_{p}\right), G L_{2}\left(F_{p}\right)$

Ruslan Skuratovskii

National Aviation University, ruslan.skuratovskii@nau.edu.ua, ruslan@imath.kiev.ua

The width of a verbal subgroup $V(G, W)$ [1] over a set W is equal to a least value $m \in \mathbb{N} \cup\{\infty\}$ such that every element from $V(G, W)$ can be represented as the product of at most m values of words from W.

In a group G, the set of squares of its elements is denoted by $\mathbb{S}(G)$. We consider the set of all squares $\mathbb{S}\left(A_{n}\right)$ of the alternating group A_{n} as a generating set for $A_{n}[2]$.

Theorem 1. The set of all squares $\mathbb{S}\left(A_{n}\right)$ from A_{n} does not coincide with the whole alternating group A_{n} and does not form a proper subgroup of A_{n}. The set $\mathbb{S}\left(A_{n}\right)$ is generating set for A_{n}. The verbal width of $V\left(A_{n}, \mathbb{S}\left(A_{n}\right)\right)=2$ for $n>3$.

Lemma 1. An arbitrary element $g \in A_{n}$ having the cyclic structure $\left[(2 k)^{1},(2 r)^{1}\right]$ can be presented in the form of a product of 2 squares of $h_{1}, h_{2} \in$ A_{n} with 2 joint letters in their cyclic presentation on n-letters alphabet, $2 k+$ $2 r-2$ ways.

Theorem 2. If in cyclic structure of $g \in A_{n}$ every even cycle appears an even number of times, i.e. $m_{2 k} \equiv 0(\bmod 2)$, and at least one of the two following conditions holds:
1)

$$
\left[\begin{array}{cc}
|F i x(g)|>1 & (a) \\
\max _{k \in N}\left(m_{2 k-1}\right)>1, & (b)
\end{array}\right.
$$

2) $\sum_{l=1}^{L} p_{2 l} \equiv 0(\bmod 2)$,
then this g can be presented as $g=h^{2}, h \in A_{n}$. The vice versa is also true. The condition $m_{2 l} \equiv 0(\bmod 2)$ is sufficient and necessary in S_{n}.

Theorem 3. Let $A \in P S L_{2}\left(F_{p}\right)$, where \mathbb{F}_{p} is some field, and eigenvalues of A has algebraic multiplicity equal to geometric multiplicity, then for a matrix A, there is a matrix $B \in P S L_{2}\left(F_{p}\right)$ such that

$$
B^{2}=A
$$

The conference of young scientists «Pidstryhach readings - 2022» May 25-27, 2022, Lviv
if and only if, $\operatorname{tr}(A)+2$ or $-\operatorname{tr}(A)+2$ is a quadratic residue in \mathbb{F}_{p}.
Theorem 4. Under conditions $\left(\frac{\lambda}{p}\right)=1$ in F_{p} and matrix A is similar to a Jordan block of the form

$$
J_{A}=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

i.e. A is simple matrix, a square root B of A exists in $P S L_{2}\left(F_{p}\right)$.

The following criterion to be square for semisimple matrix in $G L_{2}\left(F_{p}\right)$ is found.

Theorem 5. If a matrix $A \in G L_{2}\left(F_{p}\right)$ is semisimple with non multiples eigenvalues, then square root $\sqrt{A} \in G L_{2}\left(F_{p}\right)$ iff $\left(\frac{\lambda_{i}}{p}\right)=1$, where $1 \leq i \leq 2$, in $F_{p^{2}}$.

The problem of recognition of square in S_{n} with using presentation of word in involutive type ray-like generating set $T=\{(1,2) ;(2,3) ; \ldots ;(n-$ $1, n)\}$ is solved analogous problem for A_{n} and Mitsuhashi's generating set is considered.

Theorem 6. The verbal width of the verbal subgroups generated by squares of the following M_{8}, M_{9}, M_{10} Mathieu groups are equal to 1. The structure of $V\left(\mathbb{S}\left(M_{9}\right), M_{9}\right)$ is $\left(C_{3} \times C_{3}\right) \rtimes C_{2}$.

Theorem 7. The following Mathieu groups $M_{11}, M_{12}, M_{20}, M_{21}, M_{22}$, M_{23} and M_{24} have the verbal width $v w\left(M_{i j}, \mathbb{S}\left(M_{i j}\right)\right)=2$.

1. D. Z. Kagan. The width of verbal subgroups in anomalous products. The width of verbal subgroups in anomalous products. Scientific news. Series Mathematics. Physics. vol. 255: 6. Issue 46 (2017), P. 24-29.
2. R. V. Skuratovskii. On commutator subgroups of Sylow 2-subgroups of the alternating group, and the commutator width in wreath products. / Ruslan V. Skuratovskii // European Journal of Mathematics. vol. 7: 1. (2021), P. 353-373. doi.org/10.1007/s40879-020-00418-9.

Вербальна ширина над множиною квадратів у знакозмінній групі і групах Матьє, критерій квадратичності в $P S L_{2}\left(F_{p}\right)$, $G L_{2}\left(F_{p}\right)$.

Ukrainian annotation
Знайдено вербальну ширину по множині квадратів для знакозмінної групи і груп Матьє. Доведені критерії квадратичності для груп $A_{n}, P S L_{2}\left(F_{p}\right)$ i $G L_{2}\left(F_{p}\right)$.

