Errata for the book

Phase Optimization Problems: Applications in Wave Field Theory
(by O. O. Bulatsyk, B. Z. Katsenelenbaum, Yu. P. Topolyuk, and N. N. Voitovich) WILEY-VCH 2010
(Ty, Bz mean line y from top, line z from bottom; only Captions is taken into account in Figures)

Page	Line	Is	Should be	Remark				
14	T6	Section 3.1.6	Subection 3.1.6					
14	T14	wave correctors	phase correctors					
19	(2.34)	$U_{0} \in L_{2}\left(D_{0}\right)$	$U_{0} \in L_{2}(D)$					
22	(2.46d)	$d \xi d \eta$.	$d \xi d \eta$,					
22	T9	(2.46c)	(2.46d)					
27	T3	instead of $d \vec{R}_{m}^{(3)}$	instead of $\vec{R}_{m}^{(3)}$					
27	(2.68)	$m=1, \ldots, M$,	$m=1, \ldots, M$.					
29	T19:(2.77)	(2.77)		deleted				
29	T19, T20, T21	$\vec{\omega}_{0}$	$\vec{\omega}$	3 times				
36	B15	to $\vec{V}_{1}\left(\vec{r}_{1}\right)$.	to $\vec{V}_{1}\left(\vec{r}_{1}\right)$.					
42	B14	The condition	This condition					
43	(3.5)	$\\|f\\|_{2}^{2}=(f, f)_{1}$	$\\|f\\|_{2}^{2}=(f, f)_{2}$					
49	T5-T8	$\begin{aligned} & \text { Similar to } \ldots \text { by } \\ & (3.48) . \end{aligned}$		deleted				
51	T7	reflexivity	relaxivity					
53	(3.78)	$d \xi^{\prime}$,	$d \xi^{\prime}$.					
56	T5,T6	homogeneous system	homogeneous equation					
58	(3.109)	$u \in L_{2}\left(\Omega_{1}\right)$	$u \in H_{1}$					
61	B3, (3.135)	$\sigma_{t}(u)$	$\sigma_{\tau}(u)$	2 times				
62	(3.138)	$f_{\tau}^{(p+1)}, \quad f_{\tau}^{(p)}$	$f^{(p+1)}, \quad f^{(p)}$					
63	B10	Real positive function ψ and constant	Real function ψ and positive constant					
63	B6	(see (3.37))		deleted				
64	T15,T16,T19,T22	Cf)]	$C f]$	4 times				
67	T1	$\|u\|$	$\|v\|$					
67	T10	$\chi_{s}(u)$	$\chi_{s}(\psi)$					
70	B12	at given ε		deleted				
75	B5	minimized	maximalized					
85	B1	has the multiple eigenvalue	has the eigenvalue					

89	B2	eigenvalues	eigenvalue	
111	T6, (4.87), (4.91)	β	t	4 times
130	B5	Asymmetrical	Asymmetrically	
173	B12	amplitude and phase distributions of different solutions are	amplitude distributions of different solutions for $c=3.0$ are	
173	B8	about 3π.	about 3π (see Fig.5.3).	
173	B5	The phase distributions of different solutions at $c=3.0$ are shown in Figure 5.3.		deleted
177	T10	dimensionless coordinate on the antenna	generalized angular coordinate in the far zone	
178	T12	to (5.147) is	to (5.147) has	
179	T12, T14	(5.151a)	(5.151b)	
179	T15	(5.151b)	(5.151a)	
180	B6	property (5.148)	property (5.154)	
180	(5.155a)	$n=1, \ldots, N$.	$n=1, \ldots, N$,	
181	T12	is larger than	is smaller than	
185	B12	$w_{n}(x)$	$w(x)$	
187	B3	function $\left(\left(f_{0^{\prime}}(\xi)\right)\right.$	function, $\left(w_{0^{\prime}}(x)\right.$,	
193	T3	to zero at $C=7$.	to zero.	
194	T8,T9	(Section 3.2.2.3) and a the ... (Section 3.2.2.4).	(Section 3.2.2.3). The ... (Section 3.2.2.4) concerning the beam wave transformers (Problem T) is considered in Section 5.3.2.	
194	B3	minimized	maximalized	
197	B12	and (5.178) take	and relations (5.178) for even m take	
197	B9	$\left(c X_{2 n} X_{2 n+1}\right)$	$\left(C X_{2 n} X_{2 n+1}\right.$	
197	B8	$\left(v_{2 n}\left(x_{2}\right)\right) d x_{2}$	$\left.\left(v_{2 n}\left(x_{2}\right)\right)\right) d x_{2}$	
203	T6	with n increasing	with c increasing	
203	B4	even-numberelement	odd-number-element	

$\left.\begin{array}{|l|l|l|l|l|}\hline 227 & \text { Figure } 5.37 & x_{0}, x_{1} & x, \quad y & \begin{array}{l}\text { ordinate } \\ \text { axes }\end{array} \\ \hline 235 & \text { B13 } & \text { wall impedance. } & \begin{array}{l}\text { wall impedance in the } \\ \text { resonator. }\end{array} & \\ \hline 237 & \text { B13 } & \text { falling onto } & \text { outgoing from }^{\frac{\varepsilon}{\mu}} & \sqrt{\frac{\mu}{\varepsilon}}\end{array}\right]$

