Îñâ³òà: Äðîãîáèöüêèé äåðæàâíèé ïåäàãîã³÷íèé óí³âåðñèòåò
iìåí³ ²âàíà Ôðàíêà (ñïåö³àëüí³ñòü – ìàòåìàòèêà òà ³íôîðìàòèêà, 2001 ð.),
àñï³ðàíòóðà ²ÏÏÌÌ ³ì. ß.Ñ.ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè (01.01.06–àëãåáðà ³ òåîð³ÿ
÷èñåë, 2009 ð.)
Íàóêîâèé ñòóï³íü: êàíäèäàò ô³çèêî–ìàòåìàòè÷íèõ íàóê
(01.01.06–àëãåáðà ³ òåîð³ÿ ÷èñåë, 2010 ð.)
Â÷åíå çâàííÿ: äîöåíò, ñòàðøèé äîñë³äíèê (ñïåö³àëüí³ñòü 111 Ìàòåìàòèêà, ç 2024ð.)
Ïîñàäà: ñòàðøèé íàóêîâèé ñï³âðîá³òíèê
 ²íñòèòóò³: ç 2001 ð.
Ïðîô³ë³ íàóêîâöÿ:
ORCID: https://orcid.org/0000-0001-5114-3296
Scopus: https://www.scopus.com/authid/detail.uri?authorId=57203801361
Google Scholar: https://nbuviap.gov.ua/bpnu/bpnu_profile.php?bpnuid=BUN0023678
Îáëàñòü íàóêîâèõ ³íòåðåñ³â: ë³í³éíà àëãåáðà, çîêðåìà ìíîãî÷ëåíí³
ìàòðèö³ òà ìàòðè÷í³ ð³âíÿííÿ; ìàòðèö³ íàä êîìóòàòèâíèìè ê³ëüöÿìè
Äåÿê³ ç ïóáë³êàö³é:
1. Dzhaliuk N.S., Petrychkovych V.M. Matrix linear bilateral equations over different domains, methods for the construction of solutions, and description of their structure // Journal of Mathematical Sciences. – 2024. – 282, No.5. – P. 616–645. https://doi.org/10.1007/s10958-024-07206-w (Scopus, 0.523, Q3)
2. Dzhaliuk N.S., Petrychkovych V.M. Kronecker product of matrices and solutions of Sylvester-type matrix polynomial equations // Matematychni Studii. – 2024. – 61, No.2. – P. 115–122. https://doi.org/10.30970/ms.61.2.115-122 (Scopus, 0.675, Q3)
3. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì. Ìàòðè÷í³ ë³í³éí³ ð³çíîñòîðîíí³ ð³âíÿííÿ íàä ð³çíèìè îáëàñòÿìè, ìåòîäè
ïîáóäîâè ðîçâ'ÿçê³â òà îïèñ ¿õíüî¿ ñòðóêòóðè // Ìàòåìàòè÷í³ ìåòîäè ³
ô³çèêî–ìåõàí³÷í³ ïîëÿ. – 2022. – Âèï. 65, ¹ 1–2. – Ñ. 18–41.
(êàòåãîð³ÿ «À»)
4.
Ðîìàí³â À.Ì., Äæàëþê Í.Ñ. Ñòðóêòóðà ôîðìè Ñì³òà íàéá³ëüøîãî ñï³ëüíîãî
ä³ëüíèêà òà íàéìåíøîãî ñï³ëüíîãî êðàòíîãî ìàòðèöü òðåòüîãî ïîðÿäêó íàä
îáëàñòÿìè Áåçó ñòàá³ëüíîãî ðàíãó 1,5 // Ïðèêëàäí³ ïðîáëåìè ìåõàí³êè ³
ìàòåìàòèêè. – 2022. – Âèï. 20. – Ñ. 25–30.
5.
Dzhaliuk N.S., Petrychkovych V.M. Equivalence
of matrices in the ring M(n,R) and its subrings // Ukrainian Mathematical
Journal. – 2022. – 73, No.12. – P. 1865– 1872. – https://doi.org/10.1007/s11253–022–02034–0.
(Scopus, 0.726, Q3)
6.
7. Äæàëþê Í.Ñ. ²ñíóâàííÿ
ðîçâ’ÿçêó ìàòðè÷íîãî ð³âíÿííÿ òèïó Ñèëüâåñòðà ó ê³ëüö³ áëî÷íî–òðèêóòíèõ ìàòðèöü
// Ïðèêëàäí³ ïðîáëåìè ìåõàí³êè
³ ìàòåìàòèêè. – 2021. – Âèï. 19. – Ñ. 79−83.
8.
Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì. Åêâiâàëåíòíiñòü ìàòðèöü ó êiëüöi M(n,R) òà â éîãî ïiäêiëüöÿõ // Óêð. ìàò. æóðí. – 2021. – 73, ¹ 12. – P. 1612–1618. DOI: 10.37863/umzh.v73i12.6858
(êàòåãîð³ÿ «À»)
9.
Äæàëþê Í. Ñ. Ðîçâ’ÿçêè ìàòðè÷íîãî ð³âíÿííÿ AX + YB = C ç òðèêóòíèìè êîåô³ö³ºíòàìè // Ìàò. ìåòîäè òà ô³ç.–ìåõ. ïîëÿ. – 2019. – 62,
¹ 2. – Ñ. 26–31.
(êàòåãîð³ÿ «À»)
10. Romaniv A. M.,
Dzhaliuk N. S. Some relationships between the invariant factors
of matrix and its submatrix over elementary divisor domains // Ïðèêëàäí³ ïðîáëåìè
ìåõàí³êè ³ ìàòåìàòèêè. – 2019. – Âèï. 17. – Ñ. 38−41.
11. Dzhaliuk Nataliia S.,
Petrychkovych Vasyl' M. Solutions
of the matrix linear bilateral
polynomial equation and their structure
// Algebra and Discrete Mathematics. – 2019. – 27, ¹ 2. – P. 243–251. (Scopus,
0.782, Q3)
12. Petrychkovych Vasyl', Dzhaliuk Nataliia
Factorizations in the matrix ring and its subrings of the block matrices // The
Fourth Conference of Mathematical Society of the
13. Petrychkovych V., Dzhaliuk N. Factorizations in the rings of the block
matrices // Bul. Acad. Stiinte Repub. Mold. Mat. – 2017. – Number 3 (85). – P.
23–33. (Scopus, 0.649, Q4).
14. Dzhaliuk N.S., Petrychkovych V.M. The structure of solutions of the
matrix linear unilateral polynomial equation with two variables //
Carpathian Math. Publ. – 2017.
– 9, No. 1.
– P. 48–56. (Web of
Science, Q4)
15. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì.
Àáñîëþòíà ðîçêëàäí³ñòü íà ìíîæíèêè ó ê³ëüöÿõ êë³òêîâî–òðèêóòíèõ ìàòðèöü //
Ïðèêëàäí³ ïðîáëåìè ìåõàí³êè ³ ìàòåìàòèêè. – 2013. – Âèï. 11. – Ñ. 36–40.
16.
17. Äæàëþê Í., Ïåòðè÷êîâè÷ Â. Íàï³âñêàëÿðíà åêâ³âàëåíòí³ñòü ïîë³íîì³àëüíèõ
ìàòðèöü òà ðîçâ'ÿçóâàííÿ ìàòðè÷íèõ ïîë³íîì³àëüíèõ ð³âíÿíü Ñèëüâåñòðà //
Ìàòåìàòè÷íèé â³ñíèê ÍÒØ. – 2012. – ò.9. – Ñ. 81–88.
18. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì.
Ðîçâ’ÿçêè ìàòðè÷íîãî ä³îôàíòîâîãî ïîë³íîì³àëüíîãî ð³âíÿííÿ // Ïðèêëàäí³
ïðîáëåìè ìåõàí³êè ³ ìàòåìàòèêè. – 2012. – Âèï. 10. – Ñ. 55–61.
19. Äæàëþê Í.Ñ.
Êë³òêîâî–ä³àãîíàëüíî ïàðàëåëüí³ ôàêòîðèçàö³¿ ìàòðèöü íàä îáëàñòÿìè ãîëîâíèõ
³äåàë³â // ³ñíèê Íàö³îíàëüíîãî óí³âåðñèòåòó "Ëüâ³âñüêà ïîë³òåõí³êà",
Ô³çèêî–ìàòåìàòè÷í³ íàóêè. – 2012. – ¹ 740. – Ñ. 5–10.
20. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì. Ìàòðè÷í³ ä³îôàíòîâ³ ð³âíÿííÿ AX+BY=C // Êàðïàòñüê³ ìàòåìàòè÷í³ ïóáë³êàö³¿. – 2011. –
Ò. 3, ¹ 2. – Ñ. 40 – 47.
21. Äæàëþê Í.Ñ.
Àñîö³éîâí³ñòü ôàêòîðèçàö³é êë³òêîâî–òðèêóòíèõ ìàòðèöü òà ¿õ ä³àãîíàëüíèõ êë³òîê
íàä êîìóòàòèâíèìè îáëàñòÿìè ãîëîâíèõ ³äåàë³â // Ïðèêëàäí³ ïðîáëåìè ìåõàí³êè ³
ìàòåìàòèêè. – 2011. – Âèï. 9. – Ñ. 82–86.
22. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì.
Ïàðàëåëüí³ ôàêòîðèçàö³¿ ìàòðèöü íàä ê³ëüöÿìè òà ¿õ çâ’ÿçêè // Ïðèêëàäí³
ïðîáëåìè ìåõàí³êè ³ ìàòåìàòèêè. – 2010. – Âèï. 8. – Ñ. 7–17.
23. Äæàëþê Í.Ñ. Îäíîçíà÷í³ñòü êë³òêîâî–òðèêóòíèõ
ôàêòîðèçàö³é ìàòðèöü íàä ê³ëüöÿìè ãîëîâíèõ ³äåàë³â // Äîïîâ³ä³ ÍÀÍ Óêðà¿íè. –
2010. – ¹ 1. – Ñ. 7 – 12.
24. Äæàëþê Í. Ñ., Îïèñ ïàðàëåëüíèõ ôàêòîðèçàö³é
ìíîãî÷ëåííèõ ìàòðèöü // Íàóê. â³ñíèê Óæãîðîä. óí–òó. Ñåð. ìàòåì. ³ ³íôîðì. –
Óæãîðîä: ÓæÍÓ, 2009. – Âèï. 19. – Ñ. 31 – 37.
25. Äæàëþê Í. Ñ., Ñï³ëüí³ ä³ëüíèêè êë³òêîâî–òðèêóòíèõ
ìàòðèöü íàä ê³ëüöÿìè ãîëîâíèõ ³äåàë³â // Ïðèêëàäí³ ïðîáëåìè ìåõàí³êè ³
ìàòåìàòèêè. – 2009. – Âèï. 7. – Ñ. 86 – 90.
26. Íàòàë³ÿ Äæàëþê, Âàñèëü
Ïåòðè÷êîâè÷,
Ôàêòîðèçàö³ÿ êë³òêîâî–ä³àãîíàëüíèõ òà êë³òêîâî–òðèêóòíèõ ìàòðèöü íàä ê³ëüöÿìè
ãîëîâíèõ ³äåàë³â // Ìàòåìàòè÷íèé â³ñíèê ÍÒØ. – 2007 ð. – ò. 4. – ñ.
79–89.
27. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷
Â.Ì., Ïðî
ðîçâ’ÿçêè ìàòðè÷íèõ ìíîãî÷ëåííèõ ð³âíÿíü ³ ïîä³áí³ñòü ìàòðèöü // Ìàòåìàòè÷í³
ìåòîäè ³ ô³çèêî–ìåõàí³÷í³ ïîëÿ. – 2005. – Âèï.48, ¹4. – Ñ.14–19.
28. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷
Â.Ì., Ïðî ñï³ëüí³
óí³òàëüí³ ä³ëüíèêè ìíîãî÷ëåííèõ ìàòðèöü ³ç çàäàíîþ êàíîí³÷íîþ ä³àãîíàëüíîþ
ôîðìîþ // Ìàòåìàòè÷í³ ìåòîäè ³ ô³çèêî–ìåõàí³÷í³ ïîëÿ. – 2002. – Âèï.45, ¹3. – C.7.–13.
Àâòîðåôåðàò
äèñåðòàö³¿:
Äæàëþê Í. Ñ. Ôàêòîðèçàö³ÿ ìàòðèöü íàä ïîë³íîì³àëüíèìè òà áëèçüêèìè äî íèõ ê³ëüöÿìè: Àâòîðåô. äèñ. ... êàíä. ô³ç.–ìàò. íàóê. – Ëüâ³â, 2010. – 19 ñ.
Ïóáë³êàö³¿ çà âèñòóïàìè íà
êîíôåðåíö³ÿõ:
1. Nataliia Dzhaliuk, Vasyl’ Petrychkovych Solutions of a given degree for the matrix linear bilateral polynomial equations // Ukraine Mathematics Conference "At the End of the Year 2024," December 16–18, 2024, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Book of Abstracts. – 92 ñ. – P. 23. – https://sites.google.com/knu.ua/aey2024/abstracts
2. Dzhaliuk Nataliia, Sylvester-type Matrix Polynomial Equations and Solutions of a Prescribed Degree // 3rd International Symposium on Current Developments in Fundamental and Applied Mathematics Sciences 02-05 September 2024, Istanbul, Turkey. Abstract and Full Text Symposium Book. ISBN 978-625-97879-0-9. – 290 p. – P. 109. –https://atabulut.atauni.edu.tr/atabulut/index.php/s/bUAy5E7j1iZOfgX
3. Dzhaliuk Nataliia, Petrychkovych Vasyl' On uniqueness of Sylvester-type matrix polynomial equation's solution // ̳æíàðîäíà êîíôåðåíö³ÿ ïðèñâÿ¬÷åíà 145-ð³÷÷þ ç äíÿ íàðîäæåííÿ Ãàíñà Ãàíà, 23–27 âåðåñíÿ 2024 ð., ×åðí³âö³. – ×åðí³âö³: ×åðí³âåöüêèé íàö. óí-ò ³ìåí³ Þð³ÿ Ôåäüêîâè÷à, 2024. – 184 ñ. – C. 126–127. – https://hahn.chnu.edu.ua/media/odbldmui/book-of-abstracts.pdf
4. Äæàëþê Íàòàë³ÿ, Ïåòðè÷êîâè÷ Âàñèëü. Ðîçâ'ÿçí³ñòü ìàòðè÷íîãî ð³âíÿííÿ AX=YB ó ê³ëüö³ áëî÷íî–òðèêóòíèõ ìàòðèöü // Có÷àñí³ ïðîáëåìè ìåõàí³êè òà ìàòåìàòèêè – 2023: çá³ðíèê íàóêîâèõ ïðàöü / çà çàã. ðåä. àêàä. ÍÀÍ Óêðà¿íè Ð.Ì. Êóøí³ðà òà ÷ë.–êîð. ÍÀÍ Óêðà¿íè Â.Î. Ïåëèõà [Åëåêòðîííèé ðåñóðñ] // ²íñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ì. ß.Ñ. ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè. – 2023. – 452 ñ. – Ðåæèì äîñòóïó: Ñ. 405–406. – http://iapmm.lviv.ua/mpmm2023/materials/ma10_13.pdf
5. Dzhaliuk Nataliia, Petrychkovych Vasyl'. The Sylvester matrix polynomial equation and its solutions // 14th Ukraine Algebra Conference, July 3–7, 2023 Sumy, Ukraine. Book of Abstracts: Sumy State Pedagogical University named after A.S. Makarenko, Sumy, Ukraine. – 150 p. – P. 54
6. Dzhaliuk Nataliia. Linear solutions to the bilateral matrix polynomial equations // Ìàòåìàòèêà òà ³íôîðìàö³éí³ òåõíîëî㳿. Ìàòåð³àëè ì³æíàðîäíî¿ íàóêîâî¿ êîíôåðåíö³¿, ïðèñâÿ÷åíî¿ 55–ð³÷÷þ ôàêóëüòåòó ìàòåìàòèêè òà ³íôîðìàòèêè, 28–30 âåðåñíÿ 2023 ð. – ×åðí³âö³: ×åðí³âåöüêèé íàö. óí–ò, 2023. – 369 ñ. – Ñ. 47–48.
7. Äæàëþê Í. C. Ðîçâ'ÿçêè ñòåïåíÿ s ìàòðè÷íîãî ïîëiíîìiàëüíîãî ðiâíÿííÿ Cèëüâåñòðà // Ìàòåð³àëè Äåâ'ÿòíàäöÿòî¿ ì³æíàðîäíî¿ íàóêîâî¿ êîíôåðåíö³¿ ³ìåí³ àêàäåì³êà Ìèõàéëà Êðàâ÷óêà, 11–12 æîâòíÿ 2023 ðîêó, Êè¿â, Êϲ ³ì. ²ãîðÿ ѳêîðñüêîãî. – C. 104–105. – https://matan.kpi.ua/uk/kravchuk–conf–2023/
8. Petrychkovych V.M., Dzhaliuk N.S. Application of special triangular forms of matrices with respect to equivalences of different types to solving linear matrix equations of Sylvester type // International Algebraic Conference "At the End of the Year" 2021, December 27–28, 2021, Kyiv, Ukraine, Abstracts: Kyiv. – 36 p. – P. 20.
9.
Dzhaliuk N., Petrychkovych V. Solutions of matrix linear Sylvester type
equations // International Conference in Complex and Functional Analysis
dedicated to the memory of Bohdan Vynnytskyi. September 13–16, 2021,
10. Nataliia Dzhaliuk,
Vasyl' Petrychkovych Block matrices, their equivalences and applications // The
13th International Algebraic Conference in
11. Nataliia Dzhaliuk Equivalence of matrices in the ring of the block
triangular matrices // XI International Skorobohatko Mathematical Conference.
October 26−30, 2020,
12. Petrychkovych V.M., Dzhaliuk N.S. Solvability of the matrix Sylvester–type equation in the ring of the block triangular matrices // Book of abstracts of the International mathematical conference dedicated to the 60th anniversary of the department of algebra and mathematical logic of Taras Shevchenko National University of Kyiv, 14–17 July 2020, Kyiv, Ukraine. – 93 p. – Ðåæèì äîñòóïó äî ðåñóðñó: https://bit.ly/2ZIyqMs– P. 63.
13. Romaniv A.M., Dzhaliuk N.S. Some connections between invariant factors
of matrix and its submatrix // International Scientific Conference Algebraic
and Geometric Methods of Analysis, 26–30 may 2020, Odesa, Ukraine. – 131 p. –
Ðåæèì äîñòóïó äî ðåñóðñó: https://www.imath.kiev.ua/~topology/conf/agma2020/agma–2020–abstracts/agma2020–theses.pdf
– P. 57.
14. Nataliia Dzhaliuk. Solutions of the Sylvester matrix equation with
triangular coefficients // The XII International Algebraic Conference in
Ukraine dedicated to the 215th anniversary of V.Bunyakovsky. July 02–06, 2019,
Vinnytsia, Ukraine. Abstracts /
Vinnytsia: Vasyl' Stus Donetsk National University, 2019. – 142 p. – P. 28–29. http://jiac.donnu.edu.ua/article/view/6933/6964
1.
Äæàëþê Íàòàë³ÿ, Ïåòðè÷êîâè÷ Âàñèëü
Òðèêóòí³ ðîçâ'ÿçêè ìàòðè÷íîãî ð³âíÿííÿ AX+YB=C // Ñó÷àñí³ ïðîáëåìè ìåõàí³êè òà ìàòåìàòèêè: çá³ðíèê íàóêîâèõ ïðàöü ó 3–õ ò. / çà çàã.ðåä. À.Ñ. Ñàìîéëåíêà òà Ð.Ì. Êóøí³ðà [Åëåêòðîííèé ðåñóðñ] // ²íñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ì. ß.Ñ.
ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè. – 2018. – Ò.3. – Ðåæèì äîñòóïó äî ðåñóðñó: www.iapmm.lviv.ua/mpmm2018. – C. 197–198.
2.
Petrychkovych V.M., Dzhaliuk N.S. A bound on
degrees of solutions of the matrix linear bilateral polynomial equation // Book
of abstracts of the XI International Algebraic Conference in
3. Petrychkovych V.M., Dzhaliuk N.S. Structure of solutions of the matrix Diofantine polynomial equations // International Algebraic Conference dedicated to 100th anniversary of L.A. Kaluzhnin. Book of Abstracts. Jule 7–12, 2014. Kyiv. – P. 29.
4. Äæàëþê Íàòàë³ÿ, Ïåòðè÷êîâè÷ Âàñèëü Ôàêòîðèçàö³¿ â ê³ëüöÿõ êë³òêîâî–ä³àãîíàëüíèõ ìàòðèöü // Ñó÷àñí³ ïðîáëåìè ìåõàí³êè ³ ìàòåìàòèêè:  3–õ ò. / ï³ä çàãàëüíîþ ðåäàêö³ºþ Ð.Ì. Êóøí³ðà, Á.É. Ïòàøíèêà. – Ëüâ³â: ²íñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ì. ß.Ñ.ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè, 2013. – Ò.3. – Ñ. 181–183.
5.
Dzhaliuk N., Petrychkovych V. Semiscalar equivalence of polynomial matrices and
solutions of the matrix linear polynomial equations // 9–th International algebraic conference in
6. Äæàëþê Í., Ïåòðè÷êîâè÷ Â. Ôàêòîðèçàö³¿ êë³òêîâî–òðèêóòíèõ ìàòðèöü òà ¿õ ÷èñëî // International Conference dedicated to the 120th anniversary of Stefan Banach, Lviv, Ukraine, 17–21 September 2012. Abstracts of Reports. – P. 268.
7. Vasyl` Petrychkovych, Nataliia Dzhaliuk The matrix Diophantine polynomial equations // International Conference on Algebra dedicated to 100th anniversary of S.M. Chernikov, August 20–26, 2012, Dragomanov National Pedagogical University, Kiev, Ukraine: Book of abstracts. – Kiev: Institute of Mathematics of UNAS, 2012. – P. 116.
8.
Dzhaliuk N., Petrychkovych V. On the minimal degree solutions of the Sylvester matrix polynomial
equations // International
mathematical conference: abstracts of talks. – Mykolayiv: Published by
9. Äæàëþê Í.Ñ. Êë³òêîâî–ä³àãîíàëüíî ïàðàëåëüí³ ôàêòîðèçàö³é ìàòðèöü íàä îáëàñòÿìè ãîëîâíèõ ³äåàë³â // Ìàòåð³àëè êîíôåðåíö³¿ ìîëîäèõ ó÷åíèõ «Ï³äñòðèãà÷³âñüê³ ÷èòàííÿ – 2012» (23–25 òðàâíÿ 2012 ð., Ëüâ³â) – Ñ. 32–35. – [Åëåêòðîííèé ðåñóðñ]. Ðåæèì äîñòóïó: http://www.iapmm.lviv.ua/chyt2012/materials/12.pdf
10. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì. Îäíîçíà÷í³ñòü êë³òêîâî–ä³àãîíàëüíî ïàðàëåëüíèõ ôàêòîðèçàö³é ìàòðèöü // Äåñÿòà â³äêðèòà íàóêîâà êîíôåðåíö³ÿ ²ÌÔÍ: Çá³ðíèê ìàòåð³àë³â òà ïðîãðàìà êîíôåðåíö³¿ [«PSC–IMFS–10»], (Ëüâ³â, 17–18 òðàâíÿ 2012 ð.) / Íàö³îíàëüíèé óí³âåðñèòåò «Ëüâ³âñüêà ïîë³òåõí³êà». — Ëüâ³â: Âèäàâíèöòâî Ëüâ³âñüêî¿ ïîë³òåõí³êè, 2012. — C. A32 – [Åëåêòðîííèé ðåñóðñ]. Ðåæèì äîñòóïó: http://psc–imfs.conference.lviv.ua/messages/psc–imfs–10–proceedings_175x250.pdf
11. Äæàëþê Í.Ñ., Ïåòðè÷êîâè÷ Â.Ì. Êë³òêîâî–òðèêóòí³ ìàòðèö³ ç àáñîëþòíîþ
âèä³ëþâàí³ñòþ ìíîæíèê³â // ×îòèðíàäöÿòà ì³æíàðîäíà íàóêîâà êîíôåðåíö³ÿ ³ìåí³
àêàäåì³êà Ì. Êðàâ÷óêà, 19–21 êâ³òíÿ, 2012 ð., Êè¿â: Ìàòåð³àëè êîíô. Ò. 2.
Àëãåáðà. Ãåîìåòð³ÿ. Ìàòåìàòè÷íèé òà ÷èñåëüíèé àíàë³ç. – Êè¿â: ÍÒÓÓ ”Êϲ”, 2012. – Ñ. 87.
12. Äæàëþê Í.Ñ. Àñîö³éîâí³ñòü ôàêòîðèçàö³é êë³òêîâî–òðèêóòíèõ ìàòðèöü // ²V Êîíôåðåíö³ÿ ìîëîäèõ ó÷åíèõ ³ç ñó÷àñíèõ
ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ìåí³ àêàäåì³êà ß.Ñ.ϳäñòðèãà÷à, 24–27 òðàâíÿ 2011ð.,
Ëüâ³â. / Òåçè äîïîâ³äåé. – Ëüâ³â: ²íñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàí³êè ³
ìàòåìàòèêè ³ì. ß. Ñ. ϳäñòðèãà÷à ÍÀÍ Óêðà¿íè, 2011. – Ñ.
241–242.
13. Petrychkovych V. M., Dzhaliuk N. S. Factorizations in rings of block triangular matrices //
8–ìà ̳æíàðîäíà àëãåáðà¿÷íà êîíôåðåíö³ÿ â Óêðà¿í³: çá³ðíèê òåç. – Ëóãàíñüê:
Âèäàâíèöòâî Ëóãàíñüêîãî íàö³îíàëüíîãî óí³âåðñèòåòó ³ìåí³ Òàðàñà Øåâ÷åíêà, 2011.
– Ñ. 159.
14. Ïåòðè÷êîâè÷ Â. Ì., Äæàëþê
Í.Ñ. Ìàòðè÷í³ ä³îôàíòîâ³ ð³âíÿííÿ // ̳æíàð. ìàòåì. êîíô.
³ì. Â. ß. Ñêîðîáîãàòüêà, 19–23 âåðåñíÿ 2011 ð.: òåçè äîïîâ. – Ëüâ³â, 2011. –
Ñ. 161.
15. Ïåòðè÷êîâè÷ Â. Ì., Äæàëþê Í.Ñ. Îäíîçíà÷í³ñòü ðîçâ’ÿçê³â ìàòðè÷íèõ
ë³í³éíèõ îäíîá³÷íèõ ïîë³íîì³àëüíèõ ð³âíÿíü â³ä äâîõ çì³ííèõ // Âñåóêðà¿íñüêà
íàóêîâà êîíôåðåíö³ÿ “Çàñòîñóâàííÿ ìàòåìàòè÷íèõ ìåòîä³â â íàóö³ ³ òåõí³ö³”, 25 –
26 ëèñòîïàäà 2011 ð.: Çá³ðíèê òåç äîïîâ. – Ëóöüê, 2011. – Ñ. 70–72.
16. Dzhalyuk N. S. Equivalence and
factorizations of partitioned matrices // 7th International Algebraic Conference in
17. Äæàëþê Í. Ñ. ijëüíèêè
ìíîãî÷ëåííèõ ìàòðèöü ç óìîâîþ ïàðàëåëüíîñò³ // Êîíôåðåíö³ÿ ìîëîäèõ ó÷åíèõ ³ç
ñó÷àñíèõ ïðîáëåì ìåõàí³êè ³ ìàòåìàòèêè ³ì. àêàä. ß. Ñ. ϳäñòðèãà÷à,
25 – 27 òðàâíÿ, 2009 ð.: òåçè äîïîâ. – Ëüâ³â,
2009. – Ñ. 168 – 170.
18. Äæàëþê Í. Ñ. Ïðî
ôàêòîðèçàö³¿ êë³òêîâî–òðèêóòíèõ ìàòðèöü òà ¿õ îäíîçíà÷í³ñòü // Äâàíàäöÿòà
ì³æíàðîäíà íàóêîâà êîíôåðåíö³ÿ ³ìåí³ àêàäåì³êà Ì. Êðàâ÷óêà, 15 – 17 òðàâ.,
2008 ð.: ìàòåð³àëè êîíô. – Ê.: ÒΠ„Çàäðóãà”, 2008. – Ñ. 600.
19. Íàòàë³ÿ Äæàëþê, Âàñèëü
Ïåòðè÷êîâè÷ Ïðî ñï³ëüí³ ä³ëüíèêè
êë³òêîâî–òðèêóòíèõ ìàòðèöü // ̳æíàð. íàóê. êîíô. “Ñó÷àñí³ ïðîáëåìè ìåõàí³êè ³
ìàòåìàòèêè”, ïðèñâÿ÷åíà 80–ð³÷÷þ â³ä äíÿ íàðîäæåííÿ àêàäåì³êà ÍÀÍÓ ß. Ñ.
ϳäñòðèãà÷à òà 30–ð³÷÷þ çàñíîâàíîãî íèì ²ÏÏÌÌ, 25 – 29 òðàâíÿ 2008 ð., Ëüâ³â: â
3–õ òîìàõ. – Ëüâ³â, 2008. – Ò. 3. – Ñ. 184 – 185.
20. Íàòàë³ÿ Äæàëþê, Âàñèëü
Ïåòðè÷êîâè÷ Ôàêòîðèçàö³¿ êë³òêîâî–òðèêóòíèõ ö³ëî÷èñåëüíèõ ìàòðèöü // ̳æíàð.
ìàòåì. êîíô. ³ì. Â. ß. Ñêîðîáîãàòüêà, 24 – 28 âåðåñíÿ 2007 ð.:
òåçè äîïîâ. – Ëüâ³â, 2007. – Ñ. 88.
21. Nataliya Dzhalyuk, Vasyl’ Petrychkovych Factorizations of partitioned matrices and solutions of linear
matrix equations // 6th International Algebraic Conference in
Íàâ÷àëüíî-ìåòîäè÷í³ ïðàö³:
1.
Åëåêòðîííèé íàâ÷àëüíî-ìåòîäè÷íèé
êîìïëåêñ «Âèùà ìàòåìàòèêà (ç³ ñêîðî÷åíèì òåðì³íîì íàâ÷àííÿ) ²Á²Ñ». Ñåðòèô³êàò ¹
04651 ïðî âèçíàííÿ ³íôîðìàö³éíîãî ðåñóðñó: íîìåð òà äàòà ðåºñòðàö³¿:
E41-143-299/2022 â³ä 29.04.2022, ó ³ðòóàëüíîìó ñåðåäîâèù³ Ëüâ³âñüêî¿
ïîë³òåõí³êè ìåòîäè÷íîþ ïðàöåþ (ÁÄ-ê). Àâòîðè: Äæàëþê Í.Ñ., Ðîìàí³â À.Ì., Ñàëî
Ò.Ì., Ô³ëåâè÷ Ï.Â. – 310 ñ. https://vns.lpnu.ua/course/view.php?id=10649
2. Åëåêòðîííèé íàâ÷àëüíî-ìåòîäè÷íèé êîìïëåêñ «Âèùà ìàòåìàòèêà». Ñåðòèô³êàò ¹ 03999 ïðî âèçíàííÿ ³íôîðìàö³éíîãî ðåñóðñó: íîìåð òà äàòà ðåºñòðàö³¿: E41-143-351/2021 â³ä 13.05.2021, ó ³ðòóàëüíîìó ñåðåäîâèù³ Ëüâ³âñüêî¿ ïîë³òåõí³êè ìåòîäè÷íîþ ïðàöåþ (ÅÅ-ê). Àâòîðè: Äæàëþê Í.Ñ., Áîáèê ².Î., Êâ³ò Ð.²., Ñàëî Ò.Ì. – 270 ñ. http://vns.lpnu.ua/course/view.php?id=10810
3. Âèùà ìàòåìàòèêà: ìåòîäè÷í³ âêàç³âêè äî ïðàêòè÷íèõ ðîá³ò, ïðèêëàäè òà çàäà÷³ äëÿ ñòóäåíò³â áàçîâîãî íàïðÿìêó “Åëåêòðîåíåðãåòèêà, åëåêòðîòåõí³êà òà åëåêòðîìåõàí³êà” (ç³ ñêîðî÷åíèì òåðì³íîì íàâ÷àííÿ) / Óêë.: Í.Ñ. Äæàëþê, ².Î. Áîáèê, ².². Âîëÿíñüêà, Î.². Ìëèíêî, À.Ì. Ðîìàí³â, Í.². Ñòðàï – Ëüâ³â: Âèäàâíèöòâî Ëüâ³âñüêî¿ ïîë³òåõí³êè, 2020. – 96 ñ.
Íàóêîâî-ïîïóëÿðí³ ïóáë³êàö³¿:
Äæàëþê Í. Ñ. Àëãåáðà åëåìåíòàðíà // Âåëèêà óêðà¿íñüêà åíöèêëîïåä³ÿ. URL: https://vue.gov.ua/Àëãåáðà åëåìåíòàðíà (äàòà ïóáë³êàö³¿: ñåðïåíü 2019ð.).
Òåëåôîí ñëóæáîâèé: (032) 258 96 22
E–mail: nataliya.dzhalyuk@gmail.com