NATIONAL ACADEMY OF SCIENCES OF UKRAINE
Pidstryhach Institute for Applied Problems of Mechanics
and Mathematics

Vasyl Fedorchuk Volodymyr Fedorchuk

CLASSIFICATION OF SYMMETRY
REDUCTIONS FOR THE EIKONAL
EQUATION

Lviv — 2018



UDC 512.813+517.957.6

Vasyl Fedorchuk, Volodymyr Fedorchuk. Classification of Symme-
try Reductions for the Eikonal Equation. - Institute of Mathematics,
Pedagogical University, Cracow, Poland; Pidstryhach Institute for Ap-
plied Problems of Mechanics and Mathematics of National Academy of
Sciences of Ukraine, 2018. - 176p.

We present the results concerning the relationship between the struc-
tural properties of low-dimensional (dimL < 3) nonconjugate subalge-
bras of the Lie algebra of the Poincaré group P(1,4) and the properties
of the reduced equations for the eikonal equation. To obtain those re-
sults, we have performed the classification of the invariants as well as of
the ansatzes for the above mentioned subalgebras. We also present some
classes of invariant solutions for the eikonal equation.

The book is intended for specialists in the theory of Lie algebras,
theory of differential equations, theoretical and mathematical physics,
and mechanics. Ref. 104.

Bacuab ®enopuyk, Bomogumup @Penopuyk. Knacudikaris cumer-
PIfiHUX pemyKIiil Jnjs piBHAHHSA efiKOHaJIa. - [HCTHUTYT MaTeMaTHKH,
Ilenaroriunmit yniBepcurer, Kpakis, [losmbma; IacTuTyT mpukiamanx
npobisiem Mexaniku i maremaruku im. d.Iligcrpurava HAH Vkpaiuu,
JIbBiB, 2018. - 176c.

Y moHorpadil mpeicTaBIeHO pe3yJIbTATH BUBYEHHS B3a€MO3B 3Ky
MK CTPYKTYPHUMH BJIACTHBOCTIMU HU3bKOpo3MipHux (dimL < 3) mec-
upsikeHnx miganre6p anrebpu JIi rpynu Ilyankape P(1,4) Ta Biaactu-
BOCTSIMU DEJIyKOBAaHUX DIBHSHDL JjIs PIBHAHHSA eiikoHasa. PesymabraTtu
FPYHTYIOTbCsI Ha IPOBEJIEHIN MOIepeIHbO KiiacudikaIlll iHBapiaHTiB, a
TAKOXK aH3aIliB JJIs BUIIE3raJanux migaaredp. IIpencraBmeno Takox Je-
AK1 KJIaCH iHBapiaHTHUX PO3BA3KIB JIJIsI PIBHSIHHS €HKOHAJIA.

st ciertiasticiB 3 Teopil anrebp JIi, Teopil mudepeHiiaapHux piB-
HsIHb, TEOPETUYHOI 1 MareMaTuvHOl (hizuku Ta MexaHiku. Bibsgiorp. 104
Ha3B.

Reviewers:

Mykola Serov, Doctor of Science, Professor, Poltava Technical Univer-
sity, Poltava, Ukraine;

Zinovii Nytrebych, Doctor of Science, Professor, National University
"Lvivska Politechnika”, Lviv, Ukraine.

ISBN 978-966-02-8468-5
(©)Vasyl Fedorchuk, Volodymyr Fedorchuk, 2018
(©Pidstryhach IAPMM of NAS of Ukraine, 2018



Contents

Preface

1 Classification of invariants for some nonconju-

gate subgroups of the Poincaré group P(1,4)

1.1

1.2

1.3

1.4

Lie algebra of the Poincaré group P(1,4)
and its nonconjugate subalgebras . . . . . . ..
Classification of functional bases of invari-
ants for one-dimensional nonconjugate subal-
gebras of the Lie algebra of the group P(1,4)
Classification of functional bases of invariants
for two-dimensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4) . . . ..
1.3.1 Lie Algebras of the Type 24; . . . . ..
1.3.2 Lie Algebras of the Type As . . . . . ..
Classification of functional bases of invariants
for three-dimensional nonconjugate subalgeb-
ras of the Lie algebra of the group P(1,4)

1.4.1 Lie Algebras of the Type 34; . . . . ..
1.4.2 Lie Algebras of the Type As & Ay

1.4.3 Lie Algebras of the Type A3 . . . . . .
1.4.4 Lie Algebras of the Type A3 . . . . . .
1.4.5 Lie Algebras of the Type A33 . . . . ..
1.4.6 Lie Algebras of the Type A34 . . . . . .
1.4.7  Lie Algebras of the Type A5 . . . . . .

11



1.4.8 Lie Algebras of the Type Azg . . . . . . 36

1.4.9 Lie Algebras of the Type A5, . . . . .. 40
1.4.10 Lie Algebras of the Type A3g . . . . . . 40
1.4.11 Lie Algebras of the Type A3g . . . . . . 41

2 Classification of anzatzes for the eikonal equa-

tion
2.1

2.2

2.3

43

Classification of ansatzes for one-dimensional
nonconjugate subalgebras of the Lie algebra of
the group P(1,4) . . ... ... ... ... ... 43

Classification of ansatzes for two-dimensional
nonconjugate subalgebras of the Lie algebra of

the group P(1,4) . . . . . . ... ... ... .. 48
2.2.1 Lie Algebras of the Type 24; . . . . .. 48
2.2.2  Lie Algebras of the Type Ao . . . . . .. 56

Classification of anzatzes for the three-dimen-
sional nonconjugate subalgebras of the Lie al-

gebra of the Poincaré group P(1,4) . . . . . .. 58
2.3.1 Lie Algebras of the Type 34; . . . . .. 58
2.3.2 Lie Algebras of the Type Ao ® A1 . .. 62
2.3.3 Lie Algebras of the Type Az . . . . .. 64
2.3.4 Lie Algebras of the Type Az2 . . . . .. 66
2.3.5 Lie Algebras of the Type Azz . . . . .. 67
2.3.6 Lie Algebras of the Type Az4 . . . . .. 68
2.3.7 Lie Algebras of the Type A5 . . . . .. 69
2.3.8 Lie Algebras of the Type Azg . . . . . . 69
2.3.9 Lie Algebras of the Type A3, . . . . .. 72
2.3.10 Lie Algebras of the Type A3g . . . . . . 73
2.3.11 Lie Algebras of the Type Azg . . . . . . 73

3 Classification of symmetry reductions for the
eikonal equation 75



3.1 Classification of symmetry reductions us-
ing one-dimensional nonconjugate subalgebras
of the Lie algebra of the Poincaré group P(1,4) 76
3.2 Classification of symmetry reductions us-
ing two-dimensional nonconjugate subalgebras
of the Lie algebra of the Poincaré group P(1,4) 88
3.2.1 Lie Algebras of the Type 24; . . . . . . 88
3.2.2  Lie Algebras of the Type Ay . . . . . .. 109
3.3 Classification of symmetry reductions using
three-dimensional nonconjugate subalgebras of
the Lie algebra of the Poincaré group P(1,4) . 114

3.3.1 Lie Algebras of the Type 34; . . . . .. 114
3.3.2 Lie Algebras of the Type Ao ® Ay . . . 127
3.3.3 Lie Algebras of the Type Az; . . . . .. 132
3.3.4 Lie Algebras of the Type Azo . . . . .. 140
3.3.5 Lie Algebras of the Type Azz . . . . .. 142
3.3.6  Lie Algebras of the Type Az4 . . . . .. 145
3.3.7 Lie Algebras of the Type A5 . . . . .. 146
3.3.8 Lie Algebras of the Type Azg . . . . . . 146
3.3.9 Lie Algebras of the Type A3, . . . . .. 156
3.3.10 Lie Algebras of the Type Azg . . . . .. 158
3.3.11 Lie Algebras of the Type Azg . . . . . . 159
References 162



Preface

It is well known that mathematical models of the real pro-
cesses of nature can be very often described with the help of
partial differential equations (PDEs).

It is also known that the important PDEs of the theo-
retical and mathematical physics, mechanics, gas dynamics,
etc. have non-trivial symmetry groups. Many of the scien-
tists used and use this fact to investigate those types of PDEs.
At present, many scientific works have been published on this
topic. It is impossible to present here even the majority of
them. Therefore, we only mention here some books concern-
ing this topic [1-27] (see also the references therein).

In the following, we focus our attention on some appli-
cations of the classical Lie method to investigate PDEs with
non-trivial symmetry groups.

In 1895, Lie [28] considered solutions invariant with re-
spect to groups admitted by the higher-order PDEs.

It turned out that the problem of symmetry reduction and
the construction of classes of independent invariant solutions
for PDEs with non-trivial symmetry groups was reduced to
a pure algebraic problem of describing all nonconjugate (non-
similar) subalgebras of the Lie algebras of symmetry groups of
those equations. The details can be found in [6,8,10,14,29,30]
(see also the references therein).

In 1975, Patera, Winternitz, and Zassenhaus [31] proposed
a general method for describing the nonconjugate subalgebras



of Lie algebras with nontrivial ideals.

Two years ago, Patera and Winternitz 32| described non-
conjugate subalgebras of real three- and four-dimensional Lie
algebras.

The results of those two works make it possible to describe
a subgroup structure of the symmetry groups as well as to
construct classes of invariant solutions for many PDEs.

However, it turned out that the reduced equations, ob-
tained with the help of nonconjugate subalgebras of the same
ranks of the Lie algebras of the symmetry groups of some
PDEs, were of different types. The details on this theme can
be found in [33-42] (see also the references therein).

Grundland, Harnad, and Winternitz [33] were the first to
point out and investigate the similar phenomenon.

The results obtained cannot be explained within the frame
of usual approach. It means that when using only the rank
of nonconjugate subalgebras of the Lie algebras of the sym-
metry groups of some PDEs under investigation, we cannot
explain differences in the properties of their reduced equa-
tions, which are obtained using nonconjugate subalgebras of
the same ranks of the Lie algebras of the symmetry groups of
those PDEs.

It is well known that the nonconjugate subalgebras of the
same rank of the Lie algebras can have different structural
properties. Therefore, in order to try to explain some of the
differences in the properties of the reduced equations for PDEs
with nontrivial symmetry groups, we suggest to investigate
the relationship between the structural properties of noncon-
jugate subalgebras of the same rank of the Lie algebras of the
symmetry groups of those PDEs and properties of the reduced
equations corresponding with them [43].

In our monograph, among other things, we present the
results concerning the realization of our suggestion for the
eikonal equation. More detailed, we present the results con-



cerning the relationship between the structural properties of
low-dimensional (dimL < 3) nonconjugate subalgebras of the
Lie algebra of the Poincaré group P(1,4) [44]| and the prop-
erties of the reduced equations for the eikonal equation. We
also present some classes of invariant solutions for the eikonal
equation.

In Chapter 1, we present the results of classification of
functional bases of invariants for one-, two-, and three-di-
mensional nonconjugate subalgebras of the Lie algebra of the
Poincaré group P(1,4).

In Chapter 2, we present the results of the classification
of anzatzes for the eikonal equation. The results are obtained
using the results of the classification of functional bases of in-
variants for low-dimensional nonconjugate subalgebras of the
Lie algebra of the Poincaré group P(1,4) (see Chapter 1).

In Chapter 3, we present the results of the classification
of symmetry reductions for the eikonal equation. The results
are obtained using the results of the classification of ansatzes
for the eikonal equation (see Chapter 2). Some classes of the
invariant solutions for the equation under consideration are
also presented.



Chapter 1

Classification of invariants for
some nonconjugate subgroups
of the Poincaré group P(1,4)

In this chapter, we present the results of the classification
of functional bases of invariants in space M (1,3) x R(u) for all
nonconjugate subalgebras of dimensions 1, 2, and 3 of the Lie
algebra of the Poincaré group P(1,4). Here, and in what fol-
lows, M(1,3) is the four-dimensional Minkowski space, R(u)
is the real number axis of the dependent variable wu.

The results are obtained using structural properties of low-
dimensional (dimL < 3) nonconjugate subalgebras of the Lie
algebra of the group P(1,4) [44].

1.1 Lie algebra of the Poincaré group
P(1,4) and its nonconjugate subalge-
bras

The group P(1,4) is a group of rotations and translations
of the five-dimensional Minkowski space M (1,4). It is the



smallest group, which contains, as subgroups, the extended
Galilei group 6(1,3) [45] (the symmetry group of classical
physics) and the Poincaré group P(1,3) (the symmetry group
of relativistic physics). The group P(1,4) has a wide ap-
plications in theoretical and mathematical physics (see, for
example, [17,46-52]).

Lie algebra of the group P(1,4) is generated by 15 bases
elements M,, = —-M,, (u,v=0,1,2,3,4) and P, (p=
0,1,2,3,4), which satisfy the commutation relations

[Py, P, =0, (Muv, Ps] = guo Py — 9uo Py,
[A4pyaﬂ4ba]:: guaﬂ4bp‘+'gupﬂ4ﬁa _'gupﬂ4?a _'gyaﬂ4ﬁpv

where goo = —g11 = —g22 = —933 = —gaa = 1, gu =0, if

pF v

Consider the following representation [53-55] of the Lie
algebra of the group P(1,4):

PO_ 87 Plz_aa :_87 __av
8x0 8%1 8%2 8x3

0 _
P4__3u’ M, =x,P,—x,P,, v4=u.

In the following, we will use the next bases elements:
G = Moy, Li1= M3, Lo=—Mgs, L3= My,

}%::<ALA‘_AJQM Ch::]wh44'ﬂﬂhy 01::17273%

1 1
;onzg(}h-—}ﬁ)a;szzf%(k:::hz73% Xy = 5(}%_+}ﬁ)'

Nonconjugate subalgebras of the Lie algebra of the group
P(1,4) have been described in the papers [56-60].
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Lie algebra of the extended Galilei group é(l, 3) is gen-
erated by the following bases elements:

L17 L27 L37 Pla P2; P37 X07 X17 X27 X3; X4'

In this chapter, we use the full list of the nonconjugate (up
to P(1,4) - conjugation) subalgebras of the Lie algebra of the
group P(1,4), which can be found in [18].

By now, we performed classification of all nonconjugate
subalgebras of the Lie algebra of the group P(1,4) of dimen-
sions < 5 [44,61, 62| using Mubarakzyanov’s classification ob-
tained in [63, 64].

1.2 Classification of functional bases of
invariants for one-dimensional non-
conjugate subalgebras of the Lie al-
gebra of the group P(1,4)

In this section, we present the results of the classification
of functional bases of invariants in the space M (1,3) x R(u)
for all one-dimensional nonconjugate subalgebras of the Lie
algebra of the group P(1,4).

It is known that is only one type of one-dimensional real
Lie algebras [63]. We denote it by A; [65]. Since all one-
dimensional Lie algebras are isomorphic, they are of the type
Ay

The results of the classification of one-dimensional non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
can be formulated as

Proposition. The Lie algebra of the group P(1,4) con-
tains 20 one-dimensional nonconjugate subalgebras of the type
Aj.

11



Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. (G):

_ _ _ 2 o2,
wi =71, wr=T9, wz=m3 ws=(23—u?)Y?;

2. (G+aX;, a>0):

w1 =1 —aln(zg +u), we=uwmze, w3=uzs,

wy = (2% —u?)V/?;

3. <L3 + %(P:a + C’3)> :

w1 = Xo, CUQ=$%—|—£L'%, W3:x§+u2,

z1 T3
w4 = arctan — — arctan — ;
X9 u

4. <L3—|—>\G, )\>0>2
wy =3, wy= (2 —u)V? w3 = (2 +23)/2

wyg = In(xp + u) + Aarctan n ;
T2

A
5. <L3—|—§(P3—|-03), 0< A< 1>:
wy =z, wo= (3 +2)V? w3 = (23 +u)?
w4 = Aarctan 1 _ arctan 22 ;
T2 u
6. (Ls+AG+aX3, A>0, a>0):

wy = (23 — u2)1/2, wy = (22 —}—x%)l/z,

12



10.

11.

T
wg = aln(zg + u) — Ars, wy = x3+ aarctan — ;
x2

A
<L3—|—§(P3+Cg)—|—Oé(X0+X4), 0<)\<1,a>0>:

— 2 2 _ 2 2 I x1
wyp =27 +x3, wp=x3+u", ws=1z0— qarctan —,
T2

x3

w4 = Axg — acarctan — ;

u

1
<L3 + §(P3 +C3) + a(Xo + X4), a> 0> :

_ .2 2 _ .2 2 N 1
wyp =27 + x5, wy=x3+u°, w3=1r0— qarctan —,
T2

T3
w4 = Tg — aarctan — .
U

It should be noted that next functional bases are invari-
ant with respect to corresponding nonconjugate subal-
gebras of the type A; of the Lie algebra of the extended
Galilei group G(1,3) C P(1,4).

. (Ls) :

2 2\1/2 :
w1 = Tg, W2 = T3, w3=($1+$2)/, w4 =1u;

<L3 — P3> .

2 2\1/2
w1 = g + u, WQ:(1131+.772)/,

! 3
ws = (2% — 22 —u?)Y2,  w; = arctan — +

To Xo+u

9

(Lg + 2X4> :

2 2\1/2
w1 = Tg + U, w2=($1+x2)/’

13



12.

13.

14.

15.

16.

17.

€2
w3 =T3, w4 =xg— u-+ 2arctan — ;
€1

<L3 — P34+ 2aXg, a> 0> :

wi = (22 + :U%)l/z, wy = 2« arctan% — 0 — U,
2

w3 = (I‘O + U)2 + 4dz3a,

wy = 2(xp + u)3 + 1202 (20 — u) + 12aw3(70 + ) ;

<L3 + a(Xo + X4), o > 0> :

_ _ (2 2\1/2 _ X1
w1 =23, wy=(x]+25)"/%, ws=1x)— aarctan -
(L3 + aXs, a>0):
w1 =2xp, W2=1u, w3 :x%—f—x%,

T
w4 = T3 + aarctan — ;
2

(P5)

w1 =Ty, W=, W3=2Iy+Uu,

wy = (2% — 22 —u?)V/2 ;

<P3 — 2X()> .
wl =1, wr=T9, ws=(To+u)®+ 43,

1
w4:xo—u+6(:ﬂo+u)3+x3(w0+u);

<P3 — X1> .

wi =T, w2 =T0+u, w3=z(v0+u)— 23

14



wy = 23 + 2u(z0 + u) ;

18. <X0 + X4> :

w1 =1, W2==T2, W3==T3, WiL=1U;

19. <X4> .

w)p =11, Wy ==, W3=2=T3, Wi=2T0+uU;

20. <X4 - X0> :

W1 = Tg, W2=17T1, W3=1=T2, W4=21T3.

1.3 Classification of functional bases of
invariants for two-dimensional non-
conjugate subalgebras of the Lie al-
gebra of the group P(1,4)

In this section, we present the results of the classification
of functional bases of invariants in the space M(1,3) x R(u)
for all two-dimensional nonconjugate subalgebras of the Lie
algebra of the group P(1,4).

It is known that there are only two different types of the
real two-dimensional Lie algebras: decomposable A1 & A; =
2A; and indecomposable As [63]. Lie algebras of the type 24
are Abelian.

Bases elements (e; and ey ) of Lie algebras of the type
Ao satisfy the commutation relations: [ej, ea] = ea [66]. Lie
algebras of the type Ag are solvable [63,66].

15



Below, we present the results obtained.

1.3.1 Lie Algebras of the Type 24,

The results of the classification of two-dimensional non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
can be formulated as

Proposition. The Lie algebra of the group P(1,4) con-
tains 42 two-dimensional nonconjugate subalgebras of the type

24;.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

L AG) @ (Ls) :

3. <G—|—OéX2, a > 0> D <X1> :

wy =3, wo= (2 —u?)? w3=mx9—aln(ze+u);

4. (G+ aXs3, a>0)® (L) :
w) = x3 —aln(zg +u), wy = (22 +x3)1/2
w3 = (2% — u?)V/?;

5. (G) & (Lz + aX3, a>0):

I
w) = x3 + aarctan —, wy = (22 + x3)1/?,
T

16



10.

11.

w3 = (2% — u?)Y/? ;

<G—|—OéX3, a>0>€B<L3—I—5X3, ﬁ>0> :
w1 = 23 — aln(xg + u) — farctan ﬁ,

T
wy = (22 +2)V?, wy = (xf —u?)/?

<L3> e, <P3 + C3> :

wy =x0, we=(x7+a3)? w3 = (23 +u)V?;

(Ly + A\G, A > 0) @ (X3) :
o= @+ a2, wy = (@ — )2,

w3 = In(zo + u) + Aarctan z—; ;

<L3 + %(Pg + Cg)> D <X0 + X4> :

wi = (23 4+ 22, wy = (23 +u?)V/2,

T T3
w3 = arctan — — arctan — ;
) u

A
<L3+§(P3+Cg), 0</\<1>EB<X()+X4>:

wy = (22 + 22wy = (23 +u?)1/2,
w3 = Aarctan o arctan 3 ;

Z9 u
(L3 + a(Xo+ X4), a>0)d (Ps+ Cs) :

wi = (23 +23)V2, wy = (23 + u?)V/?,

17



12.

13.

14.

15.

16.

17.

o
w3 = g — aarctan — ;
T2
<L3 + Oé(Xo + X4>, a > 0> 7] <P3 + C3 + Qﬁ(XO + X4),
g >0):
wi = (af +a3)?, wa = (af +u?)V,

w3 = Jarctan s xo + aarctan o
U X9

It should be noted that next functional bases are invari-

ant with respect to corresponding nonconjugate subal-

gebras of the type 24; of the Lie algebra of the extended

Galilei group G(1,3) C P(1,4).

(L3) ® (Ps) :

w1 =z 4+u, wo= (2 +x3)/2
w3 = (23 — 23 —u?)V/?;

<L3 — P3> &P <X4> :

w1 =20 +u, wy= (ﬁ +$%)1/27
T3

x1
wsg = arctan — +

To  wo+u’

(L3) @ (X4) :

_ _ (2 2\1/2 .
w1 =23, Wy =2x0+ U, w3—($1+1’32)/7

<L3> b <X0 + X4> :

wy =13, wy= (2 +x)V2 w3=u;
(L3) ® (X4 — Xo) :

18



18.

19.

20.

21.

22.

23.

2 2\1/2 .
w1 = Tg, W2 = T3, W3:(1’1+932)/a

(L3 + a(Xo + X4), a>0)® (Xy) :
w1 = T3, we= (23 +x%)1/2,

T
w3 = Tg + u — aarctan — ;
T2

(L3 + a(Xo + X4), a>0)d (X4 — Xo) :

x1
w1 =x3, wp= (12 +x%)1/2, w3 = xg — carctan — ;

(L3 + aXs, a>0)® (Xy):
w1 = X9 + u,

T
wo = (23 4+ 23)Y?, w3 = x3 4+ cvarctan — ;
T2

(L3 + aXs, a>0)® (Xo+ X4) :
w1 = U,

I
wo = (x3 4+ 23)Y?, w3 = x3 + cvarctan — ;
T2

(L3 + aXs, a>0)® (X4 — Xo) :
w1 = Zo,

r1
1/2, w3 = r3 + aarctan — ;

wy = (¢ + x3)
To

<L3 —+ 2X4> &) <X3> :
w1 =x0+uU, wg= (I% + I%)1/27

Z2
w3 = g — u + 2arctan — ;
x1

19



24.

25.

26.

27.

28.

29.

<L3 — P34+ 2aXy, a # 0> S <X4> :

Ty
wy = (22 + 23)Y?,  wy = 20+ u — 20arctan —,
€2

w3 = (20 +u)? + dr300 ;

<L3 + 2X4> @D <P3 — 26Xy, B> 0> :
wy = (22 + x%)1/2, wy = (z0 + u)? + 4Bx3,

1
ws = 4 arctan o 28(zo — u) — = (wg + u)® —
Z2

3
—2x3(xo + ) ;

<L3 —|— 2X4> @ <P3> .

2 21/2
w1 = (27 + x3) 12wy =20 +u,
2

x 1
w3 = 3 4 2arctan — + 2u ;
o+ U )

<L3> b <P3 — 2X0> :
wi = (23 4+ 222, wy = (w0 + u)? + 4a3,

1
wg:xo—u+6(xo+u)3+a:3(xo+u);
(P1) @ (P2) :
w1 =x3, wo=xTo+u, W3:($8—ZC%—$%—U2)1/2;
<P1 — X3> ) <P2> :

w) =0+ u, wy= (28— 2?23 —u?)/?
1 .
x0+u’

W3 = T3 —

20



30.

31.

32.

33.

34.

35.

<P1—X3>@<P2—7X2—ﬁX3, 5>0,’Y>0>:

x x
w1 =20 +u, wy= fas + !
Tot+u-+7vy xot+u
2 2
wy=—d 2 oy

To+u xoF+UuUt7y

(Pr — X3) © (P, — v X2, v >0) :

x1

w1 :x0+u, w9y = _$37
xTo + U
2 2
x x
1 2
w3 = + + 2u ;

To+u xoF+UuUt7y

(P1)® (P, — X2 — X3, 8>0):

wi=xo+u Wo =X _ﬂ
1 0 ; 2 3 rotutl
2 2
= — 2 Loy,
ro+u wotu+tl
<P1>EB<P2—X2>2
w1 =20+ u, Wwe==1I3,
2 2
wy=—1 4 T2 4oy,
ro+u xpt+u-+1
(P3) ® (X1) :

w1 =T, Wwo=2x0+u, w3=(r5—T3—

(Ps) @ (Xa) :

W) =T, W2=2T2, W3=2T0+U;
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36.

37.

38.

39.

40.

41.

42.

(P — X1) © (X4) :

3

w1 =22, W2=2x0+tu WwW3=2— ;
o+ u

(Ps — X2) @ (Xq)

w =z +u, wy=(x¢—a%—u?)?

T3

w3 = Ty — :

3 2 o+ U

<P3—2X0>EB<X4>Z

w] =1, W= X9, w3=($0—|—u)2+4x3 ;
<P3 — 2X()> P <X1> :
w1 =T, wa= (xg+u)?+4zs,

wg:xo—u+6(:ﬂo+u)3+x3(w0+u);

<X0 + X4> D <X4 — X0> :

w1 =T, W2=2T2, W3=12T3,;

(X1) @ (X4) :

w1 =20+ U, WwW2==2T2, W3=21T3;

<X1> ) <X4 — X0> :

w1 = Zo, w2 = T2, w3 = I3 .

1.3.2 Lie Algebras of the Type A,

le1,e2] = e
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The results of the classification of two-dimensional non-
conjugate subalgebras of the type As of the Lie algebra of the
group P(1,4) can be formulated as

Proposition. The Lie algebra of the group P(1,4) con-
tains seven two-dimensional nonconjugate subalgebras of the
type As.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. <—G, P3>2

2 2 2\1/2 .
wi =1, wy =y, wy=(x}—1-u?)?;

2. (-G, Xy):

w1 =1, W2=1=T2, W3=12T3;

3. <—G—04X1, Xy, a> O> :

w1 =2, wy=13, w3=2zx —aln(xg+u);

4. <—G—04X1, P;, a> 0> :
w1 =1 —aln(zg +u), we = w9,

wy = (3 — 23 — u2)1/2 :

1
9. <_XL3 -G, P3, A\ > O> :

wi = (2f +23)'2, wy = (af — 2§ —u?)'/?,

wsg = In(xp + u) + A arctan i—; ;

D

1
. <—XL3—G, )(47 )\>0>
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2 2\1/2
wy =3, wy = (z{+ x3) /2

x
w3 = In(wo + u) + Aarctan —
Z2

1
7, <—XL3—G—%X3, Xy, )\>0,a>0>:

Il
wi = (23 4 23)Y?,  wy = x3 + carctan —
2

ws = In(xg + u) + A arctan i—; :

1.4 Classification of functional bases of
invariants for three-dimensional non-
conjugate subalgebras of the Lie al-
gebra of the group P(1,4)

In this section, we present the results of the classification
of functional bases of invariants in the space M (1,3) x R(u)
for all three-dimensional nonconjugate subalgebras of the Lie
algebra of the group P(1,4).

Taking into account one-dimensional Lie algebras of the
type Ay as well as two-dimensional Lie algebras, we obtain
two types of the three-dimensional decomposable Lie alge-
bras: 3A1, Ay @ A;. Besides it, there exist 9 types of the
real indecomposable Lie algebras As 1, ..., A3g [63,66]. Two
of them depend on parameters (constitute continuums of the
Lie algebras).

In the following, the symbol A7 denotes the jth Lie al-
gebra of dimension r and a is a continuous parameter for the
algebra.

It should be indicate that the notation Aﬁj corresponds
to those used in the paper by J. Patera et al. [66].
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In what follows, for the given specific Lie algebra, we write
only nonzero commutation relations [63,66].
Below, we present the results obtained.

1.4.1 Lie Algebras of the Type 34,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type 3A4; of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains 31 three-dimensional nonconjugate subalgebras of the ty-
pe 3A;7.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. (G)® (Xq) ® (X71) :

Wi = T3, Wy = (x% — u2)1/2 :

2. (G) ® (L3) ® (X3) :
wy = (2 —u?)V2 wy = (a? +23)V/?;

3. <G +aXs3, a> 0> ) <X1> ) <X2> :

w1 = x5 —aln(zg +u), wr =123 —u?;

4. <L3> ) <P3 + C3> ) <X0 + X4> :
o= @+, = ()

It should be noted that next functional bases are invari-
ant with respect to corresponding nonconjugate subal-
gebras of the type 34; of the Lie algebra of the extended
Galilei group G(1,3) C P(1,4).
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10.

11.

12.

(P1) & () & (X3)

w1 = X0 + U, CUQZCU%—IL'%—IL’%—Uz;

(P1) @ (P2 — Xo) ® (X3) :

x%—x%—zﬁ x%
wi=zotu, wr= xo+u _xo—l—u—i—l;
<P1>EB<P2—04X2, OL>O>EB<P3—’)/X3, 7750>:
w1 = xg + u,

22 22 22

—9 :
w2 u+x0—|—u ro+tut+a wmoptut+y’

. <P1> D <P2 —aXsy, a> 0> D <P3> :

w1 = X9 + u,

a 73 73

To + U To+ U+« m0+u;

wo = 2u +

(P1) @ (P2) © (X4) :

w1 =23, Wy =0+ U,;

(Pr) @ () & (P3) :

w1 = X0 + U, CUQ::E%—:L‘%—ZL‘%—I%—U2;

<P1—’)/Xg,”y>0>@<P2—X2—5X3,5750>@<X4>:
w1 = xg + u,

wo = x3(xo + u)2 — (yz1 4+ 220 — 23) (0 + U) — VX7 ;|
(P —=79X3, v>0) @ (2 — X2) ®(Xy) :
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13.

14.

15.

16.

17.

18.

19.

20.

w1 = X9 + u,

we = x3(w0 + u)2 — (yx1 — x3) (20 + U) — Y7 ;
<P1> S5 <P2 — X9 —0X3, 0 > 0> ©® <X4> :

w1 =9+ u, we=wxs(xo+u)— 20+ T3 ;

(P1) ® (P2 — X2) © (Xy) :
w1 =23, Wy =Iy+U;
(P — X3) @ (P2) @ (X4) :

1 .
Y
o+ U

W1:$0+u, (,U2:x3_

(P3) & (X1) ® (Xy) :

w1 = T9, Q)Q:Qjo—f—u;

<P3>EB <X1>@<X2>:

2.
w1 = To + U, CUQZIL'%—ZL‘%—U ;
(Py — Xo) @ (X1) @ (Xy) :

I3 )
xo+u’

w1 =2Zp+u wy=2xy—

(P3s —2X0) ® (X1) @ (Xo) :

w1 = (T + u)? + 4x3,
W2:$0—U+é(xo+U)3+x3(xo+u) ;
(Ps — 2X0) @ (X1) ® (X4) :
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21.

22.

23.

24.

25.

26.

27.

28.

29.

w1 = T2, wo = (x0+u)?+4w3;

(L3) © (X3) © (Xy) :

w =z +u, wy=(z}+a3)?;

(L3) ® (P3) © (X4) :

w =z +u, wy=(z}+x3)?;

<L3 + Oé(Xo + X4), o > 0> D <X3> D <X4> :

x2
(2 2\1/2 _ o2
wl—(x1+:1:2)/, wo = xg + u + aarcta ol

(L3) ® (—Ps + 2Xo) @ (2X4) :
wi = (22 + x%)lﬂ, wy = (wg +u)? + 43 ;

(Lg) @ (X4 — Xo) ® (X3) :
w1 =x0, wy=(x}+ 32,
(L) ® (Xo + X4) @ (X4 — Xo) :
wy =3, wp= (a3 +a})Y?;

(L3 + a(Xo+ X4), a>0) P (X3) @ (X4 — Xo) :

xI9
2 2\1/2 .
w1 = (] + 3) / , W2 = To+ aarctan ol

<L3 + aXs3, a> O> D <X0 +X4> S%) <X4 —X0> :

T
= (z? 2)1/2 = rctan — .
w1 = (7 +25)"/%, we=1x3+aa -

(Xo) ® (X1) & (X4) :
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W1 = T2, W2 =23;

30. <X1> D <X2> D <X4 — X()) :

w1 = To, W2 =13,;

31. (X1) ® (X2) & (Xy) :

w1 =23, Wy=Ip+U.
1.4.2 Lie Algebras of the Type A, ® A,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type As @ A; of the Lie algebra
of the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains 10 three-dimensional nonconjugate subalgebras of the ty-
pe As ® Aj.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. (—G, P3>@<X1>2

_ ) 2 2\1/2 .
w1 = T2, wg—(xo—.r3—u)/,

2. <—G, P3> &) <L3> :

wy = (23 — 23 — w2, wy = (22 +x%)1/2 :

3. <—G —aXs, P53, a> 0> 7] <X1> :
w1 =9 —aln(zg +u), we= (x% — x% — u2)1/2 :

4. <—G — Ong, X4, a> 0> ©® <X1> :
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w1 =23, wy=xy—aln(ryg+u);

5. (-G —aXs, X4, a>0)d (Ls+ X3, f>0):

T
wy = (224232, wy = z3—aln(zetu)+8 arctan — ;
T2

6. (-G —aXs, X4, a>0)®(Ls):

wi = (23 4+ 22, wy =3 — aln(zy +u) ;
7. <_Ga X4> D <X1> :

w1 = T2, W2=I3,;
8. (—G, X4> D <L3> :

_ (2 2N1/2 .
w1 = T3, wz—($1+372)/»

9. (-G, Xy4)® (Ls+aXs, a>0):

T
wy = (23 + 23?2, wy = x3 + aarctan — .
T2

1
10. <—XL3 -G, 2Xy, A > 0> S¥) <X3> :

wi = (34 23)Y2,  wy = 1In(zo 4 u) + \arctan o
T2

1.4.3 Lie Algebras of the Type A;;

le2, e3] = €1

The Lie algebras of the type Az are nilpotent [66].
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The results of the classification of three-dimensional non-
conjugate subalgebras of the type As; of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains 17 three-dimensional nonconjugate subalgebras of the ty-
pe A371.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

L (2uXy, P3, X1+ pX3, u>0):
W] =2, Wo =29+ U;
2. <2X4, P3 —L3, X3> :
w =z +u, wy=(z}+23)?;
3. <2X4, P3 —Xl, X3> .
w1 =0+ U, Wwy=212I2;

4. <2/1,X4, Py — Xo, Xq+puXs, u> O> :

r3 — pr1
o+ U

w1 =g+ U Wy =2Tg—
9. (—204X4, L3+ aXs3, Py, a> 0):
w =z +u, wy=(z}+x3)?%;
6. <4X4, Pl—XQ—’)/Xg, P+ X5 —MX2—§X3, ")/>0,
d#0,pu>0):
w1 = X9 + u,

wo = x3(w0 + u)? — (yo1 + 126 — pas)(xe + u) +
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10.

11.

12.

+(6 —yp)z1 — 227 + T3 ]

(4Xy4, P — X0 —7X3, P+ X1 —puXo, v>0,u>0):
w1 = X9 + u,

wy = w3(xo+u)? — (yr1 — pas) (o +u) —ypurs —ray+23 ;
(4Xy, P — X2, Po4+ X1 — puXo —6X3, 0 >0, #0) :
w1 = X9 + u,

wy = x3(20 + 1)? — (220 — pws3)(zg +u) +

+ox1 + T3 ;

(A4Xy, P — Xo, Po+ X1 —pXo, p#0):

w1 = X9 + u,

wo = 3(2 + u)? + pas(zo +u) + 23 ;

<4X4, P — Xs, P2+X1—5X37 5>0>:

w1 = X9 + u,

wy = x3(xT0 + u)? — 228(20 + ) + dT1 + 3 ;

(4Xy, PL—Xo, Po+ X71):

Wi =Tp+U, W2=1I3;

(4X4, P — Xo — X3, P+ X1, B> 0):

w1 = X + u,

wo = x3(70 + u)? — 218(70 + u) — Brg + T3 ;
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13.

14.

15.

16.

17.

<2X4v P3a X3>:
w1 =29+ U, w2==I, W3=2T2;

As we see, this subalgebra has three invariants instead
of two ones. The reason is that this subalgebra has rank
equal 2.

(2uXy4, P3—2Xo, X1+ pXs3, p>0):
w1 = T9, wa = (zo+u)®+ 4wy —4dux ;
<2X4, P — Ly —2aXy, X3, a> 0> :

I
wy = (22 +2)V?, we =20 arctan —= — o —u ;
2

(—2pX4, L3+ BX3, P3s—2Xo, §>0):

1
wy = (24212, wy = Barctan%—f—z(xo—ku)z—kxg ;
2

<2X4, P3 - 2X0, X3> .

w1 = 1, Wy = T2 .

It should be noted that all above written functional bases
are invariant with respect to corresponding nonconjugate sub-
algebras of the type As; of the Lie algebra of the extended

Galilei group G(1,3) C P(1,4).

1.4.4 Lie Algebras of the Type A3,

[61763] = €1, [62763] =e1+e2

The Lie algebras of the type A3 o are solvable (63, 66].
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The results of the classification of three-dimensional non-
conjugate subalgebras of the type Aso of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains three three-dimensional nonconjugate subalgebras of the
type As 9.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. 26Xy, Ps, G+aX;+ X3, a>0,8>0):
w1 =2, wy =1z —aln(xg+u);

1
2. <2aX4, AP, XL?,+G+§X3, A>o,a>o>:

wi = (23 4+ 23)Y2,  wy =1In(xg + u) + Narctan el
T2

3. (2aXy, P3, G+ aXs, a>0):

w1 = 71, Wy =T .

1.4.5 Lie Algebras of the Type As3

[617 63] = €1, [627 63] = €2

The Lie algebras of the type Az 3 are solvable (63, 66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type As g3 of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains five three-dimensional nonconjugate subalgebras of the
type As 3.
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Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. (P, P, G):
w) =3, wy= (2 —a?—2a3—u?)/?;

2. <P1, P, G+ aXs, Ct>0>:

w1 = x5 —aln(zg+u), wy =123 — 23— 25 —u?;

1
3. <P3, X4, XLg + G, A > 0> :

wy = (22 + 23)Y2,  wy = In(x¢ + u) + Xarctan n ;
T2

4. <P3, Xy, G+ aXy, Oé>0>:

w1 =T, wo=x1—aln(ry+u);

5. (P, X4, G):

w1 = 1, Wy = T9 .

1.4.6 Lie Algebras of the Type A3,

[617 63] = €1, [627 63] = —€2

The Lie algebras of the type A3 4 are solvable [63,66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type As4 of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains four three-dimensional nonconjugate subalgebras of the

type As 4.
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Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1. (Xo, Xy, -G — aXy, Oé>0>:

W1 = T2, W2 =23;

1
2. <X0, Xy, —XLg—G—%X;g, )\>0,C¥>0>:

I
wy = (23 +23)Y2,  wy = x3 + carctan — ;
T2

1
3. <X0, — Xy, —XL;), -G, > 0> :
wy =13, wy = (x?+x3)/2.
4. <X4, XQ, G>

w1 =T, W2=1=T2, W3=1I3.

As we see, this subalgebra has three invariants instead of
two ones. The reason is that this subalgebra has rank equal 2.

1.4.7 Lie Algebras of the Type Aj;

[61763] = €1, [62763] = aez, (O < |CL| < 1)

The Lie algebra of the group P(1,4) contains no of this
type subalgebras.

1.4.8 Lie Algebras of the Type As¢
e1, €3] = —ea, [e2, €3] = €3
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Lie algebras of the type A3 are solvable [63,66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Asg¢ of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains 18 three-dimensional nonconjugate subalgebras of the ty-
pe A376.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1
1. <X1, —Xo,—L3 — §(P3 + C3) — a(Xo+ Xy),a > 0> :

3
w = (2 + vV wy = aarctanz — 0 ;

A
2. <X1, Xo, L3+ E(Pg +C3)+a(Xo+ X4),0< A< 1,
a>0):
w = (23 +u?)V? wy = aarctan =2 — Az ;
u
3. <—X1, X9, —Lg — MG, \ > O> :

wr =3, wy = (xf—u?)/?

4. <X1, Xo, L3+ MG + aXs, )\>0,0é>0>:

wi = (2 —u®)YV2,  wy = Arz — aln(zg +u) ;

1
5. <X1, Xo, L3—|—§(P3—|—03)> :
w1 = T0, wo = (73 +u?)l/2
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A
6. <—X1, Xo, —L3g — §(P3 —|-03), 0< A< 1> :

10.

11.

wy =z, wo = (x3+u?)?;

1 1
<—X3, X4 — Xo, —XLg - §(P3 + 03), 0< A< 1> :

_ 2 oN1/2 .
w) =20, w2 = (23 +3)1/?%;

1 1 Q
<X3, X4 — Xo, XL?) + §(P3 + 03) + X(XO + X4),

0<A<l,aa>0):

I
wi = (23 4+ 23)Y2,  wy = aarctan — — zq .
T2

It should be noted that next functional bases are invari-
ant with respect to corresponding nonconjugate subal-
gebras of the type Az ¢ of the Lie algebra of the extended
Galilei group G(1,3) C P(1,4).

APy — X1, Po— X9, —P3+ L3) :

o + 23 73
w1 =g+ U, wy= + + 2u ;
ro+u+1 x04+u

<P1, —PQ, —L3 — Ong, a > O> :

w1 = X0 + U, WQ:(E%—,I’%—QL‘%—UZ;

(P1, P, —P3+ Ls) :

w1 = To + U, WQ:.Z%—QT%—.T%—(E%—UQ;
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12.

13.

14.

15.

16.

17.

18.

<P17 P2v L3+2X4>:
w1 =23, Wy =0+ U,
(P1, Pa, L3):
2 2 2 2

Wy =x3, W2=20+tuU W3=2I5j—x]—T5—U

As we see, this subalgebra has three invariants instead
of two ones. The reason is that this subalgebra has rank
equal 2.

<Xla _X25 P3_L3>:

w1 = X9 + u, CUQZI'%—,Q?%—U2;

<X1, —Xo, —Ls —aX3, a> 0> :

w1 =Tg, W2=1U;

(X1, —Xa, —L3 —2X4):

w1 =xp+u, wy==13;

<X1, —Xo, P3— L3 —2aXy, a> 0> :

w1 = (wg + u)? + 4230,

we = (wg + u)® + 6aws(zo + u) + 602 (ro — ) ;

<X17 XQ, L3>:

w1 =g, W2=3, W3=1U.

As we see, this subalgebra has three invariants instead of
two ones. The reason is that this subalgebra has rank equal 2.
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1.4.9 Lie Algebras of the Type Af;

le1,e3] = ae; — ea, [ea, €3] = e1 + aea, (a > 0)

Lie algebras of the type A ; are solvable [63,66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type A§; of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains two three-dimensional nonconjugate subalgebras of the
type Agj.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:
1. <P1, Py, Ls+ MG, X\ > 0> :

_ (2 2 2 2\1/2 .
Wi = I3, wg—(xo—xl—xQ—u)/,

2. (P1, Py, L3+ AG + aXs, A>0,a>0):

w1 = Arg — aln(zg +u), we =3 — 23 —23—u?.

1.4.10 Lie Algebras of the Type Asg

le1, €3] = —2ea, [e1, €2] = €1, [e2,e3] = e3

Lie algebras of the type Az g are semisimple [66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Asg of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains one three-dimensional nonconjugate subalgebra of the

type Asg.
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Below, we present bases elements of that subalgebra and
a functional basis of invariants corresponding with it:

<P37 G7 _03> :

Wy =1, wW2=I2, W3= (x%—x%—uQ)l/Q.

As we see, this subalgebra has three invariants instead of
two ones. The reason is that this subalgebra has rank equal 2.

1.4.11 Lie Algebras of the Type Aj,

[617 62] = €3, [627 63] = €1, [637 61] = €2

The Lie algebras of the type A3 g are semisimple [66].

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Asg of the Lie algebra of
the group P(1,4) can be formulated as:

Proposition. The Lie algebra of the group P(1,4) con-
tains two three-dimensional nonconjugate subalgebras of the
type Asg.

Below, we present bases elements of those subalgebras and
functional bases of invariants corresponding with them:

1 1
1. <_Z(2L3+P3+C3)’ Z(2L2+P2+C2)’
1
Z(2L1+P1+Cl)>:
w) = xg, wo = (23 + 23 + 23 + u?)V/? ;

2. <—L3, —Lg, —L1>Z

2 .2 4 2\1/2
w1 = g, wgz($1+x2+az3)/, w3 =1u .
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As we see, this subalgebra has three invariants instead of two
ones. The reason is that this subalgebra has rank equal 2.
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Chapter 2

Classification of anzatzes for
the eikonal equation

In this chapter, we present the results of the classification
of anzatzes for the eikonal equation in space M(1,3) x R(u)
for all nonconjugate subalgebras of dimensions 1, 2, and 3 of
the Lie algebra of the Poincaré group P(1,4).

The results are obtained using structural properties of low-
dimensional (dimL < 3) nonconjugate subalgebras of the Lie
algebra of the group P(1,4) [44] as well as the results of
the classification of functional bases of invariants for those
subalgebras (see Chapter 1).

2.1 Classification of ansatzes for one-di-
mensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4)

In this section, we present the results of the classification
of ansatzes in the space M (1, 3) x R(u) for all one-dimensional
nonconjugate subalgebras of the Lie algebra of the group
P(1,4).
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The results of the classification of one-dimensional non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 20 one-dimensional nonconjugate subalgebras of the type

Aj.

However, we only have 19 ansatzes in the space M (1, 3) x
R(u), which are invariant with respect to the one-dimensional
nonconjugate subalgebras of the type Aj.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.

1. (G):
(I’% - U2)1/2 = @(Wl,&)g,(ﬂg),

W1 = T1, W2 = T2, w3 = I3,
2. (G+aX;, a>0):

1 — Oéhl(.’]fo + U) = @(Wl,(&)g,(ﬂi&),

wi =72, wr=um3, ws= (23— u})Y?
3. (Ls+ MG, A >0):

(93(2) - u2)1/2 = p(w1, w2, w3),

wi =13, wo = (22 +a3)!/?

w3 = In(xo + u) + Aarctan 2—;;

4. <L3 + %(Ps + C’3)> :

UQ + .’E% = gO(u)l,WQ,CU?,),
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2 2 X1 x3
w1 = xg, w2 = x{ + T35, w3z = arctan — — arctan —;
i) u

A
. <L3+§(P3+Cg), 0</\<1>:

(u? + 23)1/2 = (w1, wa, w3),
wy =0, wo= (2} +~T§)1/2;

x1 x3
w3 = Aarctan — — arctan —;
xI9 u

L3+ NG+ aXs, a>0,\>0):
(x(Q) - U2)1/2 = QO(Wl,CdQ,w:;),
wi = (23 4+ 23?2, wy = aln(zg +u) — A3,

I
w3 = xr3 + aarctan —;
T2

A
. <L3+§(P3+C3)+04(X0+X4), oz>0,0<)\<1>:

u2

_|_

2 __

1'3 - 90((,()17(402,&)3),
2 2

L1 T T3

T
, wo = xg— aarctan —,
T2

w1 = —+

z3
w3 = Arg — ccarctan —;
u

1
. <L3+§(P3+Cg)+a(X0+X4), Oé>0>:

’LL2

+

2 __
I3 = SO(CUl,WQ,CUg),
af + 23

T
, Wwo = xg— aarctan —,
T2

w1 = —+

T3
w3 = o — aarctan —;
U
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It should be noted that the next results are obtained
with the help of nonconjugate subalgebras of the type
Ay of the Lie algebra of the extended Galilei group

10.

11.

12.

13.

G(1,3) C P(1,4).

(L3) :

u = p(wr,ws,ws),

2 2\1/2.
w1 = T, W2 =23, w3:(x1+x2)/,

<L3 — P3> .

a1 z3
arctan — + = (w1, wz,ws3),

X9 To + U

Wi =T+ U, wr= (.%‘% —I—x%)l/Q, w3 = (33% —x% —u2)1/2;

(L3 + a(Xo+ X4), a>0):

u = p(wy,ws,ws),

T
1/27 w3 = g — aarctan —;

w = x3, wy = (2] + z3) 2o
(L3 + aXs3, a>0):

u = @(wla w2, w3)a

z
w1 = Tg, Wy = l’% + 3:%, w3 = x3 + aarctan —;
Z2
<L3 + 2X4> :
€2
xo — u + 2arctan — = p(w,we, ws),
x1

2 | 92\1/2 .
wi =z +u, wy=(xF+2)Y? w3 =13
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14.

15.

16.

17.

18.

19.

<L3 — P34+ 2aXg, a> 0> :
(zo + u)2 + dr3a = p(w, wa, ws),
X1
_ B -,
wi = (23 4+ 23)Y?,  wy = 2aarctan o

wz = 2(xg + u)3 + 1202 (¢ — u) + 1203(70 + );

(Ps)

(23 — 23 — u*)V? = p(wr, wa, w3),

w)p =11, W =T, W3=Ty+ U;
<P3 - 2X0> .
To — U+ 1(:1:0 +u)? + z3(20 + 1) = (w1, w2, w3),

6
2 .
w1 =1, W=, w3=(ro+u)’+ 4xs;

(Ps — X1) :
z1(zo + u) — 3 = p(wi, wa, w3),
= 22 + 2u(zo + u);
w1 =T2, wW2=x0+tu, w3=1T3 0
(Xy) :
x3 = p(w1, w2, ws3),
w1 =11, W =T2, W3=ITy+ U;
<X0+X4>Z

U = SO(CUl, w2, W3),

w1 =1, W2=1=T2, W3=I3.
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From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct an ansatz, which re-
duces the eikonal equation. Let’s present bases elements of
that subalgebra as well as a functional basis of invariants cor-
responding with it.

(X4 — Xo) :

w1 = Zo, w2 = I, w3 = T2, Wyq = T3.

2.2 Classification of ansatzes for two-di-
mensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4)

In this section, we present the results of the classification
of ansatzes in the space M (1, 3) x R(u) for all two-dimensional
nonconjugate subalgebras of the Lie algebra of the group

P(1,4).

2.2.1 Lie Algebras of the Type 24,

The results of the classification of two-dimensional noncon-
jugate subalgebras of the type 247 of the Lie algebra of the
group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 42 two-dimensional nonconjugate subalgebras of the type
2A;.

However, we only have 37 ansatzes, which are invariant
with respect to the two-dimensional nonconjugate subalgebras
of the type 24;.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.
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. (G) ® (Ls) :
(2§ — u?)M/? = p(wr,wa),
wr =3, wo= (23 + a3V
. <G—|—OéX3, o > 0>€B <L3> :
3 —aln(xg+u) = p(wr, wa),
wy = (2 + 2V, wy = (af — )V
. (G)® (Ls+aXs, a>0):
X1
x3 + aarctan — = (w1, we),

Z2

wi = (23 4+ 2)Y2, wy = (23 — u?)V/2.

G+ aXs, a>0)® (Ls+ X3, 5>0):
(25 — u)'/? = p(wi,w),

w1 = zg—aln(rg+u)—F arctanﬁ, w2 = (ﬁ‘i‘l’%)l/?-
x

(L3 +AG, A>0) @ (X3) :

(2% 4+ 23)Y2 = p(wr,w2),

wy = (23 —u?)Y?,  wy = In(xg + u) + A arctan ﬂ;

T2
- A{G) @ (X1) :
(xf — u?)/? = p(wr,w),

w1 = T2, W2 =T3;
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10.

11.

12.

(G+aXs, a>0)& (X)) :
x3 = (w1, w2),
2 _ 2)1/2

wi = (25— u wo = w9 — aln(zg + u);

<L3> &) <P3 + Cg> :

(u? + 23)1/2 = (w1, wa),

_ 2 oN1/2.
w) =20, w2 = (23 + 312

<L3 + Oé(Xo + X4>, a > 0> ©® <P3 + C3> :

T
ro — aarctan — = @(w1,w2)7
Z2

wi = (23 4+ 22, wy = (u® + 23)V?

<L3 -I-Oz(Xo -I—X4>, a > O> D <P3 +C3 +25(X0+X4),
g >0):

4o €3
aarctan — + farctan — — zp = (w1, ws),
Zo u

o= (@3 a2, ey = (4 o)

<L3 + %(P?, + C'3)> © (Xo + Xy) :

T I3
arctan — — arctan — = (w1, w2),
xIo Uu

o= (@3 a2,y = (4 ad)

A
<L3+§(P3+Cg), 0</\<1>EB<X()+X4>:

T I3
Aarctan — — arctan — = @(wy, ws),
Zo u
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13.

14.

15.

16.

wi = (23 4+ 22, wy = (u® + 23)V2.

It should be noted that the next results are obtained
with the help of nonconjugate subalgebras of the type
2A; of the Lie algebra of the extended Galilei group

G(1,3) C P(1,4).

(L3) @ (Ps) :

(2% — 23 — u?)/? = p(wr,w),
w1 =T +u, wy= (14 33)Y2
<L3 + 2X4> P <P3> :

2

x
Y5 4 oarctan 2L 4 2u = o(wy,w2),
o+ U )

wi = (23 + 23)Y2, wo = o + u;
<L3> EB <P3 — 2X0> .

1
xo—u+ 6(1‘0 +u)® + z3(20 + 1) = (w1, w2),

Wy = (ac% + x%)1/2, wo = (zo + u)2 + 4x3;
<L3 + 2X4> D <P3 — 28Xy, B> 0> :
(w0 + u)? + 4823 = @(w1,ws),
W) = (IL’% + x%)1/2,
1 1 3
wy = 4B arctan — — 20(xg — u) — —(xg + u)® —
T2

3
—2x3(z0 + u);
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17.

18.

19.

20.

21.

22.

<L3 — P3> ) <X4> :

o+ u = @(wi,wa),
T3

o

2 2\1/2 — .
wp = (x7+x wo = arctan +

! ( 1 2) ’ 2 T2 x0+u’

<L3 — Pg + QOéXo, « 7§ O) s> <X4> :

x1
To + u — 2 arctan = o(wr,wa),
2

wi = (23 4+ 23)Y2%, wy = (20 + u)? + daxs;

<L3> EB <X0 —|— X4> N

u = p(w,w2),

wi = (2 + 23)1/2,  wy = a3;

<L3 + Oé(X() + X4), o > 0> () <X4> :

I
xo + u — aarctan — = @(wy, ws),
x2

2 | 2v1/2.
w1 =23, wy=(x7+z3) /2

(L3 + aXs, a>0)® (Xo+ X4) :

I
x3 + aarctan — = (w1, we),
T2

w1 =u, wo=(1?+ :13%)1/2;

<L3 + 2X4> &P <X3> :

T2
o — u + 2arctan — = (w1, wa),
I

2 .2\1/2.
w1 =20+ u, wy=(x]+x5) /2.
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23.

24.

25.

26.

27.

28.

(L3) ® (X4) :

(2% 4+ 23)V2 = (w1, w2),

wp =20+ u, w2=13;

(L3 + aX3, a>0)® (Xy) :

xy
x3 + aarctan — = (w1, w2),
L2

2 | . 2v1/2.
wi =0 +u, wy= (22 +23)1/?

(P1) @ (Py) :

o+ u = @(wy,ws),

— (2 a2 2 21/2,
wi =13, wy= (28 —a? — a3 —u?)V?

(P1 — X3) & (Py) :

(2§ — a7 — 23 — u?)1? = p(wy,wa),
X1 .
x0+u’

wi =9+ u, wr=1I3—

(P1)® (P, — X2 — X3, 8>0):

ro+u xp+u+1l

+ 2u = (10((*)17 ("-)2);

+ g2
w1 = U, Wo =orqa — pHh——
1 0 y W2 3 votutl
(P1) © (P2 — X2) :
ro+u xpt+u-+1

W] =T + U, Wy = T3;

+2u = QO(CU]_, w2);
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29.

30.

31.

32.

33.

34.

<P1 —X3> D <P2 —vXo, v > 0> :

i a3
+ + 2u = p(wy,ws),
To+u xo+uty 90(1 2>
Tl
w1 =20+ U, we= — I3;
To + U

<P1 —Xg) D <P2 —vXo — X3, B>0,v> 0> :
l x5

To+u x0F+uUty

+ 2u = p(wi,ws),

Sy T
w1 =29+ U, wo= + — X3;
To+Uu-+y To + U

(Ps) & (X1) :
(2 — 23 — u®)V? = p(wr,ws),

w1 = T2, W2 =20+ U;
<P3 — 2X0> @ <X1> N

1
xo—u+ g(l‘o +u)? + z3(20 + 1) = (w1, ws),

w1 = xg, wy = (zo + u)2 + 4x3;

<P3 — X2> P <X1> :
€3
To+ U

X2 — :<P(w1,w2),

2 2 2\1/2.
w1 = o + u, wgz(xo—x3—u)/,

(Ps) @ (Xy) :

xr1 = 90(00170‘32)7

w1l = T2, W =g+ U;
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35.

36.

37.

<P3 — 2X0> ) <X4> :

(g 4 u)? + 4x3 = (w1, w),

w1 =1, W2 =T2;

<P3 — X1> ) <X4> :
3

To+ U

w1 = T2, W2 =20+ U;

x — = p(wi,w2),
(X1) ® (Xy) :

r3 = p(w1,w2),

w1 =x9+uU, Wy = To.

From the invariants of the remaining five nonconjugate
subalgebras it is impossible to construct ansatzes, which re-

duce the eikonal equation.

Let’s present bases elements of

those subalgebras as well as functional bases of invariants cor-
responding with them.

1.

(L3) © (X4 — Xo) :

_ _ (2 2\1/2
w1 = To, W2 =73, W3—(5U1+5‘72)/-

2. (Ls+ a(Xo+ X4), a>0) (X4 — Xo):

Wi = T3, Wy = (:1:% —l—:c%)l/Q

Y

1
w3 = Trg — aarctan — .
T2

3. (L34 aXs3, a>0)d (X4 — Xo) :

wi =x0, wy= (x}+a3)/?
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4. <X0 + X4> D <X4 — X0> :

Wi =1, W2=1=x2, W3=12I3.

5. <X1> D <X4 - X0> .

w1 = Zo, W2 = T2, W3 = I3 .

2.2.2 Lie Algebras of the Type A,

The results of the classification of two-dimensional non-
conjugate subalgebras of the type As of the Lie algebra of the

group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains seven two-dimensional nonconjugate subalgebras of the

type As.

However, we only have six ansatzes, which are invariant
with respect to two-dimensional nonconjugate subalgebras of

the type As.

Below, we present bases elements of those subalgebras and

ansatzes corresponding with them.

1. (-G, P5):
(2 — 23 — uH)V? = (w1, w2),

W1 = o1, w2 = T2;

1
2. <—G — XL?” P, A > 0> :

(22 — 23 — uH)Y2 = (w1, wo),

wi = (234 23)Y2,  wy = 1In(zo + u) + Narctan ﬂ;
T
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1
3. <—G—XL3, Xy, )\>O>:

In(xg + u) + Aarctan o o(wy,ws),
Z2

_ 2 oN1/2.
w) =23, w2 = (23 + 2312

4. <—G—O_/X1, X4, a> 0> :

x| — aln(a:o + u) = g0(w1,w2),

W1 = T2, W2 = X3;

1
. <—X(L3 + NG + an), X4, o > 0,)\ > 0> :
Z
In(zp + u) + A arctan — = (w1, ws),
Z2
wi = (23 4+ 23)Y2, wy = x3 + carctan .

T2

6. <—G—OJX1, P3, o> O> :

xr1 — aln(a:o + u) = @(w17w2)7

_ _ 2 2 2\1/2
Wi = T2, wg—(:co—xg—u)/.

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct ansatz, which reduces
the eikonal equation. Let’s present bases elements of this sub-
algebra and, corresponding to its, functional basis of invari-
ants.

(—G, Xy):

w1 = I1, w2 = T2, w3 = I3 .
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2.3 Classification of anzatzes for the
three-dimensional nonconjugate sub-
algebras of the Lie algebra of the Po-
incaré group P(1,4)

In this section, we present the results of the classifica-
tion of ansatzes in the space M(1,3) x R(u) for all three-

dimensional nonconjugate subalgebras of the Lie algebra of
the group P(1,4).

2.3.1 Lie Algebras of the Type 34,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type 3A4; of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 31 three-dimensional nonconjugate subalgebras of the ty-
pe 3A;.

However, we only have 25 ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type 3A;.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.

1. <P1—’}/Xg,")/>0>@<P2—X2—5X3,5#0>@<X4> :
x3(xo + u)2 — (yz1 4+ 220 — 23) (0 + 1) — Y21 = P(W),
w =T+ U;

2. (Pl —vX3,v7 > 0> D <P2 — X2> D <X4> :
z3(zo +u)? — (yr1 — x3) (20 + 1) — Y21 = (W),

w = T + U;
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10.

<P1> ) <P2 — X9 —0X3,0 > 0> ©® <X4> :

$3($0 + U) — 90 + x3 = go(w), w =z + u;

(P — X3) ® (P2) & (Xy) :

xr3 — xoa:l—u = p(w), w=uz0+ u;
(P — X2) @ (X1) © (Xy) :

T — a:oacj—u = p(w), w=uzp+ u;
(P1) @ (P2) © (X3) :

23— 22 -2t —u? =), w=mz+u
(P3) @ (X1) ® (Xa) :

2

2 2

= Sp(w)a W =20+ u;

(P1) ® (P) © (P3) :

2 .2 .2 .2 .2 _ _ .
xp—x] — 25 —25 —ut =pw), w=x+y;

(P1) @ (P — Xo) © (X3)
2 2 2 2
.’L'O_xl—u o ,CI;'2 _ _ )
xO‘i‘u x0+u+1 QO(CU), w l’o—f—U’
(P1) ® (P — aXy,a > 0) @ (Py—yX3,7 #0) :
2 2 2
qup—_p 2B o),

To+u Totuta Totu+y
w = xg + Uu;
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11.

12.

13.

14.

15.

16.

17.

18.

19.

<P1> ) <P2 —aXo,a > 0> ©® <P3> :

2 .2 9
x7 +x €T

2u+ —— 2 — p(w),
ro+u  Totuta

(X1) ® (X2) © (Xy) :

x0+u:90(w)7 W = Is3;

(P1) @ (P> — X2) ® (Xy) :

To+ U= gp(w)7 W= T3;

(L3) @ (X3) ® (X4) :
zo+u=pWw), w= ]+
(P3) @ (X1) © (Xy) :
To+u=pw), w=cx;

(L3) @ (Ps) @ (Xy) :
zo+u=pWw), w= 3+
(P1) ® (P) @ (Xy) :

$0+’u:gp(w)7 W = I3,

(G) @ (X2) ®(Xq) :

(I‘% o U,2)1/2 = QO((.U), W = I3;

<G> D <L3> S>) <X3> :

W = Zo + U;

(z§ — u2)1/2 =pw), w=(2?+ :z;%)l/Q;
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20.

21.

22.

23.

24.

25.

<P3 — 2X0> © <X1> ) <X2> :
%(900 +u)? + z3(wo + u) + 20 — u = p(w),
w = (zo +u)? + 4a3;

(G +aX3,a>0) 6 (X1)d(X):

13 —aln(zg+u) = p(w), w=1z2—u%

(L3) @ (P3 + C3) & (Xo + X4) :
(22 4+ u®)V? = p(w), w= (2 +23)V/?
<L3 + Oz(Xo + X4>,(l/ > 0> D <X3> ©® <X4> :

To+ U+ aarctan% =pw), w= (m% + m%)l/Q;
X1

<P3 — 2X0> o) <X1> ) <X4> :

(w0 + u)? + 43 = (W), w = x;

<L3> D <—P3 + 2X0> &) <2X4> :

(w0 +u)? +das = p(w), w = (2} +23)1/2

From the invariants of the remaining six nonconjugate sub-
algebras it is impossible to construct the ansatzes, which re-
duce the eikonal equation.

Below, we present bases elements of those subalgebras and
their invariants.

1.

<L3> ©® <X0 + X4> ¥ <X4 — X0> T I3, ({13% -+ x%)1/2;
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2. <L3 + Oé(XO + X4),Oé > 0> @ <X3> ©® <X4 — X0> :

Z2
(23 4+ 23)Y/2, 20 + aarctan ==,
Z1

3. (Lg + aX3,a > 0> ©® <X0+X4> 5] <X4 —X0> :

x1
(23 +23)'/2, 23+ aarctan —;
T2

4. (L3) ® (X4 — Xo) @ (X3) : xo, (a3 + 23)V/?;
5. (Xo) ® (X1) ® (Xy): o, x3;

6. <X1> D <X2> ©® <X4 — X()): Tg, T3.

2.3.2 Lie Algebras of the Type A; & A,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Ay ® A; of the Lie algebra
of the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 10 three-dimensional nonconjugate subalgebras of the ty-
pe Az @ Aj.

However, we only have seven ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type As @ Aj.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.

1. (-G, P3) @ (Xq) :

(af — 23 — ) = p(w), w=uy
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2. (=G, P3) & (L) :
(2 — 23 —u)/? = p(w), w=(af+25)"%

3. <— (G+OéX2), Ps,a > 0> © <X1> :

To — aln(zg +u) = pw), w= (23 —22— u2)1/2;

1
4. <—XL3 -G, 2X4,\ > 0> © <X3> :

111($0 + U) + Aarctan ﬂ = (p(w)7 W = (l'% + I’%)l/2,
T2

5. (— (G—l—O&Xz), X4,a > O> & <X1> :

xo —aln(zg+u) = p(w), w=xs;

6. <—(G+O{X3), X4,@>0>EB<L3+5X3,5>0>:

x3 — aln(xg + u) + S arctan o o(w),
x2

w = (o] +25)"/%
7. <— (G+ OcXg), X4, a0 > 0> S5 <L3> :

13 —aln(zg+u) = p(w), w=(2?+ x%)l/Q.

From the invariants of the remaining three nonconjugate
subalgebras it is impossible to construct the ansatzes, which
reduce the eikonal equation.

Below, we present bases elements of those subalgebras and
their invariants.

1. <—G, X4> EB<X1> T2, T3;
2. (~G, Xa) ® (L3): x3, (23 + 2V
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3. (-G, Xy) @& (L3 +aX3z,a>0):

I
(x3 4+ 23)Y?, 23+ aarctan —.
Z2

2.3.3 Lie Algebras of the Type A;;

The results of the classification of three-dimensional non-
conjugate subalgebras of the type As; of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 17 three-dimensional nonconjugate subalgebras of the ty-
pe A371.

However, we only have 16 ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type Az ;.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.

1. <4X4, Pl—XQ—’)/Xg, P+ X4 —MX2—5X3,7>0,
d#0,u>0):

r3(wo +u)? — (yo1 + 226 — pas)(wo +u) + (6 — yu) 1 —

—zoy + x3 = p(w), w=xp+ u;
2. (4Xy, PL— X2 —X3, Po+ X1 — pXo2,7>0,u>0):

z3(zo +u)? — (yr1 — pas)(zo +u) — yury — T2y + 23 =

=p(w), w=uz0+ u;
3. (4X4, P — Xo, Po+ X1 — puXo —0X3,0 >0,u#0) :
z3(zo + u)? — (220 — pas)(zo + u) + dz1 + 73 = P(W),

w = T + U;
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10.

11.

12.

13.

<4X4, P— Xy, Po+ X1 —0X3,0 > 0> :

w3(wo+u)? —z20(20+u)+671+23 = (W),

(4Xy, PL — X2 — X3, Po+ X1,8>0):

z3(wo+u)®—PBr1(vo+u)—fratas = p(w),

(4Xy, P —Xo, P+ X1 — puXo, pn #0) :

x3(z0 + u)? + pws(zo +u) + w3 = (W),

(2uXy, P3— X9, X1+ pX3,u>0):

T3 — Y

Tg— —— =p(w), w=x0+u;

o+ u

- (2uXy, P3, X1+ pXsz, 0> 0):

o +u=pWw), w=uy

. (2X4, Ps— L, Xs):

zo+u=pw), w=(z]+a3)"?

(2X4, P3— X1, X3):
To+u=pw), w=cx;

<—20¢X4, Ls+aXs, P3,a> O> :

zo+u=pw), w=(af+23)"%

(4X4, PL —Xa, P+ X)) :

o+ u=pw), w=uzs;

(2uXy, Py —2Xo, X1+ pXsz,pu>0):

(o + u)? + dx3 — dpz = p(w),
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14. <2X4, P; — Ly —2aXy, X3,a > 0> :

i
2ccarctan 1 To— U= gp(w% w = (l’% + @'%)1/2,
T2

15. (=2BXy4, L3+ X3, P3—2Xo,8>0):
ry 1 2 2., ..2\1/2
S arctan x—-l-z(xo-l—u) +x3 = p(w), w=(r7+z3)"%
2

16 <2X4, Pg, X3>2
T2 = SD(WMWQ), w1 =g+ U, wr = I1;

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation.

Below, we present bases elements of the subalgebra and
its invariants.

<2X4, P3—2X0, X3>: T1, 9.

2.3.4 Lie Algebras of the Type A;,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Aso of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains three three-dimensional nonconjugate subalgebras of the

type Az 2.

However, we only have two ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type Az .

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.
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1. 26Xy, P3, G+ aX; + X3,a>0,8>0):

x1 —aln(xg+u) = p(w), w=x9;

1
2. <204X4, APs3, XL?, + G+ %X;g,a >0, > 0> :

hl(l'o + U) + Aarctan ﬂ = Sp(w% W = (l'% + I’%)l/2_
T2

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation.

Below, we present bases elements of the subalgebra as well
as its invariants.

<201X4, P, G+ aXs,a> 0>Z xr1, T9.

2.3.5 Lie Algebras of the Type A;s3

The results of the classification of three-dimensional non-
conjugate subalgebras of the type A3 3 of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains five three-dimensional nonconjugate subalgebras of the
type As 3.

However, we only have four ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type Az 3.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.

1. (P, P, G):

(2§ —2f — 23 — )P = p(w), w=uas;
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2. <P1, P, G+ aXs,a> 0> :

T3 —aln(rg +u) = pw), w=x3— 2?23 —u%

1
3. <P3, Xy, XLg + G, > 0> :

110(550 + U) + A arctan ﬂ = Sp(w), w = ((L‘% + ZB%)1/2,
Z2

4. <P3, X4, G+ aXi,a> 0> :

1 —aln(zg+u) = p(w), w=xs.

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation.

Below, we present bases elements of the subalgebra and
its invariants.

<P37 X47 G> Z1, T2.

2.3.6 Lie Algebras of the Type A3,

The results of the classification of three-dimensional non-
conjugate subalgebras of the type A3 4 of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains four three-dimensional nonconjugate subalgebras of the
type Az 4.

From the invariants of all four nonconjugate subalgebras
it is impossible to construct the ansatzes, which reduce the
eikonal equation.

Below, we present bases elements of those subalgebras and
their invariants.
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1. <X4, XQ, G): Ir1, T2, I3;

1
2. <Xo, — Xy, _XL?’ -G, > O>: x3, (22 —l—x%)l/?;

3. <X0, X4, —(G+O¢X1),O&>O>I To, I3;

L
4. <X0, Xy, —f’—G—%Xg,a>o,A>o>:

x1
(23 +23)'/2, 23 4+ aarctan —.
T2

2.3.7 Lie Algebras of the Type Aj;

The Lie algebra of the group P(1,4) contains no noncon-
jugate subalgebras of the type A3 ;.

2.3.8 Lie Algebras of the Type As¢

The results of the classification of three-dimensional non-
conjugate subalgebras of the type As¢ of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains 18 three-dimensional nonconjugate subalgebras of the ty-

pe A3,6-

However, we only have 16 ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type Aszg.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.
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(P — X1, Po— Xy, —P3+ L3) :
x%—i—x% x%
rzo+u+1 x9+u

+2u=pw), w=x+u;

. <P1, —PQ, — (L3 + OéXg) , O > 0> :

2 2

2 2

=p(w), w=1z0+ u;

. <X1, —XQ, Pg—L3>Z

2

2 _ .2
TH—T5— U

=pw), w=uw0+u;

. (P, Py, —P3+ L3):

2 2 2 2 2 (w)
b

TH—T] — T3 —T3—U = w =T+ u;

(X, =X, —(Ls+2Xy))

xo+u=¢pw), w=uzs;

. <P1, P, L3+2X4>2

Tot+u=pWw), w=x3;

1
. <X1, Xo, L3—|—§(P3—|-03)>:

(22 4+ u?)? = p(w), w = xp;

A
. <—X1, Xo, —L3—§(P3+03),0<)\< 1>

(2 +u)? = p(w), w=a0;
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10.

11.

12.

13.

14.

15.

(=X1, Xp, — (L3 +XG),A>0) :

(2% — )2 = p(w), w=uaxs;
(X1, —X2, — (L3 + aX3),a>0):

u = 90(("07 W = To;

(X1, —Xo, P3— L3 —2aXg,a > 0) :

(w0 + u)3 + 6aws(mo + u) + 602 (z0 — u) = p(w),
w = (zo +u)? + 4a30;

1
<X1, —X2, Ly — 5 (Ps+ C3) — a(Xo + X4),
a>0):

xr
aarctan > — 2 = p(w), w = (22 +u?)'/?
u

A
<X1, Xo, L3+ §(P3 + 03) + Oé(Xo + X4),O£ > 0,
0<A<]):
Uu
<X1, X9, L3+ MG + aX3,« >O,)\>0> :
Arg —aln(zg + u) = p(w), w= (I% — u2)1/2;

(X1, Xo, Lg):

U= @(WlaWZ)v w1 = o, W2 = I3;
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16. (P, P, Ls) :

T3 = p(wi,wa), w1 =x0+u, we =3 — 27— 33—’
From the invariants of the remaining two nonconjugate
subalgebras it is impossible to construct the ansatzes, which
reduce the eikonal equation.
Below, we present bases elements of those subalgebras and
their invariants.
Ly 1

1. <—X3, X4 — Xo, —T—§(P3+Cg>,0</\<1>:

o, (23 +23)1/%

L 1 «
2. <X3, X4—X0, 73+§(P3—|—03)+X<X0+X4),
a>0,0<A<]):

Z
(z? + 23)'/2, aarctan — — x.
Z2

2.3.9 Lie Algebras of the Type Aj;

The results of the classification of three-dimensional non-
conjugate subalgebras of the type A3, of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains two three-dimensional nonconjugate subalgebras of the
type A ;.

Consequently, we have two ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras
of the type A3 7.

Below, we present bases elements of those subalgebras and
ansatzes corresponding with them.
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1. (P, Py, Ly+ AG, A > 0) :

(-2t — 2§ — )2 = plw), w= s

2. <P1, P, L3+)\G+OCX3,0(>O,)\>O>I

Mg — aln(zo+u) = p(w), w= a3 — a3 — 23 —u?.

2.3.10 Lie Algebras of the Type Ass

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Asg of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains one three-dimensional nonconjugate subalgebra of the

type A3 g.

Consequently, we have one ansatz, which is invariant with
respect to three-dimensional nonconjugate subalgebra of the
type Ass.

Below, we present bases elements of that subalgebra and
an ansatz corresponding with it.

<P37 G7 _C3>:
(m% — x% — u2)1/2 = p(w1,we), w1 =1, wo = Ta.

2.3.11 Lie Algebras of the Type A3y

The results of the classification of three-dimensional non-
conjugate subalgebras of the type Asg of the Lie algebra of
the group P(1,4) can be formulated as follows:

Proposition. The Lie algebra of the group P(1,4) con-
tains two nonconjugate subalgebras of the type Asg.
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Consequently, we have two ansatzes, which are invariant
with respect to three-dimensional nonconjugate subalgebras

of the type Asg.
Below, we present bases elements of those subalgebras and

ansatzes corresponding with them.

1 1 1 1
1. <—§ (Lg + 5 (Pg —|—Cg)) , 5 (L2 + 5 (P2 —i—Cg)) ,

%<L1+%(Pr+cg>>:

(23 + 23 + 23 +u?)1? = p(w), w = zp;

2. (—Ls, —Ly, —Ly):

2 .2 .2\1/2
w) = g, wy = (23 4 23 + x3)1/2.

u = p(w,w2),
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Chapter 3

Classification of symmetry
reductions for the eikonal
equation

The eikonal equations in the spaces of different dimensions
and different types have many applications in the geometric
optics, acoustics of inhomogeneous media, theories of gravity,
theoretical physics, etc. The details on this theme can be
found in [67-78](see also the references therein).

Those equations have also been studied by different meth-
ods. Some details can be found in [79-104] (see also the ref-
erences therein).

In this chapter, we consider the eikonal equation of the
form as follows:

du \ 2 ou \ 2 Au \ 2 Au \ 2 _1
8:(}0 or Ox9 8333 -
where u = u(z), = = (xo,x1,x2,23) € M(1,3).
In 1982, Fushchych and Shtelen [53] proved that the max-
imally extensive local (in sense of Lie) invariance group of

this equation was a conformal group C(1,4) of the (4 + 1)
-dimensional Poincaré-Minkowski space with the metric
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2= — a2 — a3 — 22— 1=

It is known that the group C'(1,4) contains, as a subgroup,
the group P(1,4).

In order to perform symmetry reduction as well as to con-
struct classes of independent invariant solutions for this equa-
tion, we used the nonconjugate subgroups of the group P(1,4).

In this chapter, we present the results of the classification
of symmetry reductions of the eikonal equation for all noncon-
jugate subalgebras of dimensions 1, 2 and 3 of the Lie algebra
of the Poincaré group P(1,4).

The results are obtained using structural properties of low-
dimensional (dimL < 3) nonconjugate subalgebras of the Lie
algebra of the group P(1,4) [44] as well as the results of the
classification of ansatzes for the eikonal equation (see Chapter
2). Some classes of the invariant solutions for the equation
under consideration are also presented.

3.1 Classification of symmetry reduc-
tions using one-dimensional noncon-
jugate subalgebras of the Lie algebra
of the Poincaré group P(1,4)

In this section, we present the results of the classification
of symmetry reductions of the eikonal equation for all non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
of dimension 1.

In Chapter 2, we have presented 19 ansatzes, which are
invariant with respect to the one-dimensional nonconjugate
subalgebras of the type Aj.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
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of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.
Below, we present the results obtained.

Reduction to PDEs

1. (G):
Ansatz
(1'(2) - U2)1/2 = 90((,01,&]2,(&)3),

Wy =T, W2=T2, W3=1T3.
Reduced equation

eI+ 3+ 3 —1=0.

Solution of the reduced equation

o(wr,wa,w3) = —(1 —c3 — c§)1/2w1 + cows + c3ws3 + 1.

Solution of the eikonal equation
(22 —u?)V2 = —(1 — 3 — )V %1 + coxa + c313 + c1.
In what follows,

_ Op
%_&ui

L i=1,2,3.

2. (G+aX;, a>0):
Ansatz
1 — aln(zg +u) = p(w1,ws,ws),
Wi = T2, Wy =T3, W3= (33(2) — u2)1/2.
Reduced equation

w3 (w3(e? + 3 — 3 + 1) — 2a003) = 0.
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Solutions of the reduced equation
w3 =0, @w,ws,ws)=crwy + cows +

ol (%M(c% + G+ Dwi a2+ a)) -

2
w3

—\/ (463 + 1)ws + a? +c3.

Solutions of the eikonal equation

2 <\/(c% + 3+ 1)(z2 — u?) + a? +a>
aln —
ro —Uu

—/( + 3 +1)(23 — u?) + o — 21 + 122 + cox3 + 3,

u = :|:£L'().

C(Ls+ MG, A>0):

Ansatz

2

(xo - U2)1/2 = (w1, wa, w3),

2 2v\1/2
wi =3, wy = (27 + x3) /2,

wsg = In(xg + u) + A arctan i—;

Reduced equation

(A2003 + w3 (92 + 3 — 1) + 2wip3)p = 0.

Solution of the reduced equation

p=0.

Solution of the eikonal equation

3 —u?=0.

78



b (s )

Ansatz
2 2
u —|—IE3 —‘P(Wlaw%w:’)),

2 2 x L3
w1 = xg9, wg =]+ w3 =arctan— —arctan —.
o u

Reduced equation

¢ (4pwi o3 — puagt + dp’wa + (0 + w2)p3) = 0.
Solution of the reduced equation

@ =0.

Solution of the eikonal equation

u? + 2% = 0.

5. <L3+%(P3+Cg), 0</\<1>:

Ansatz
(u? 4+ 23)V? = p(wr, wa, ws),
wy =0, wo= (2 +~T§)1/27

T I3
wg = Aarctan — — arctan —.
xI9 u

Reduced equation

P PPwi (et — 03 — 1) — (wF + A¢?)¢3) = 0.
Solution of the reduced equation

p=0.

Solution of the eikonal equation

u? + 23 = 0.
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6. (Ls+ A\G+ aXs, a>0,A>0):

Ansatz

(5

—u)Y? = p(wr, wa,w3),
W] = (ac% + x%)1/2, we = aln(zg + u) — Axs,

I
w3 = r3 + aarctan —.
T2

Reduced equation

o (ewi((Mp2 — @3)* + @1 — 1) + a?ppd + 2awipy) =
=0.

Solution of the reduced equation

p=0.

Solutions of the eikonal equation

u = txp.

A
7. <L3+§(P3+Cg)+a(X0+X4>, Q{>0,0<)\<1>:

Ansatz
2 2
u” + 25 = p(wi,wa,ws3),

2 2 L1
w1 =]+ 25 w2 =x9)— «carctan —,
Z2

3
w3 = Arg — acarctan —.
U

Reduced equation

Aowo? 2_ 2 (22, 2 2_

pwiet + (0 —wi)pw; — (Ao —a)wips =2 wipespr+
+4wip? = 0.
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Solution of the reduced equation
p=0.

Solution of the eikonal equation

u2+w§:0.

1
. <L3+§(P3+03)+Q(X0+X4), Oé>0>3

Ansatz
2 2
u” + 25 = p(wi,wa, ws3),

2 2 L1
w1 =]+ x5 w2 =x9)— carctan —,
T2

T3
w3 = Tg — aarctan —.
U

Reduced equation
(dpwiel + (a2 — wi)pws +wi(a® — p)pi—
—2w1ppaps + 4w1<,02) p=0.

Solution of the reduced equation

p=0.

Solution of the eikonal equation

u2+x§:O.

It should be noted that the next results are obtained
with the help of nonconjugate subalgebras of the type
Ay of the Lie algebra of the extended Galilei group

G(1,3) C P(1,4).
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9.

10.

(Ls) :
Ansatz
u = @(Wl, w2, w3)a

w1 =T, wr=ua3, wg=(x]+ x%)1/2~
Reduced equation

Pl -3 - i —1=0.

Solution of the reduced equation

o(wr,we,w3) = (¢ 4+ 2+ 1)2w; + cows + c3ws + c1.

Solution of the eikonal equation
u=(c3+ 4+ 1)"2x + cowz + c3(x? + 22)? + ;.
<L3 — P3> .

Ansatz
x3

T
arctan — + = p(w1, w2, w3),

T2 X0+ u
wy = o +u, we = (x3+23)V2, wy = (23 — 23 —u?)1/2
Reduced equation
waw? (2wiwip1ps — wiwiws(ps — ¥3)—

—(w? + wi)ws) = 0.

Solutions of the reduced equation

w1:0, CL)3:0.

Solutions of the eikonal equation

u = —xg, x%—x%—uQ:O.
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11.

12.

(L + a(Xo+ X4), a>0) :
Ansatz
U = @(w17w27w3)5

X1
w1 = T3, we= (23 +1‘%)1/2, w3 = xg — o arctan —.

T2
Reduced equation
w3 (1 +03) + (0 — wi)pf + w3 = 0.
Solution of the reduced equation
o(wr,ws,ws) = —i((c? — 3 + w3 + c§a2)1/2 + c3ws +

C3(x
2 2 5 2212 ) TAWLT
((ef — 5+ 1)ws + c502)

+1iceg arctanh <

“+c4.

Solution of the eikonal equation
C3x

((cf = & + 1)(af + 23) + c5a?)1/?

1/2

u = iacg arctanh

—i (3 — &+ 1) (2 +23) + da?) " +

Ty

+c3 (a:o — «arctan > +cix3 +c4.

Z2

(L3 + aXs, a>0):
Ansatz
u = @(wi, wa,ws),

T
w1 = Tg, Wy = x% + x%, w3 = r3 + aarctan —.
T2

Reduced equation

wap? — 4w%go% — (a® + wg)gpg —wy = 0.
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13.

Solution of the reduced equation

p(wr,wa,w3) = ((¢f — 6§ — Dwz — c3a?)

((cf = § = Vws — c§a®)'/?

C3x

1/2 _

—acg arctan +

+ciwy + c3ws + c4.

Solution of the eikonal equation

x
u=/(c? — 2 —1)(2? + 23) — a®c2 + c3a arctan =1
Z2

V(G =G - D@Ei+43) - a) .

—c3a arctan
C3

+c3r3 + 1o + 4.

<L3 + 2X4> :

Ansatz

Z2
o — u + 2arctan — = p(wy,ws, w3),
4o

_ — (2 2\1/2
wi =z 4+u, wo= (22 +23)V?  ws=uxs.
Reduced equation

w3 (4p1 + 03 +p3) +4=0.

Solution of the reduced equation

p(w, w2, ws) = 2iy/(c1 + B)ws + 1 —

—2¢ arctanh (\/(cl + c3)ws + 1) + c1wy + 2c3w3 + cy4.

Solution of the eikonal equation

To— U+ 2arctanﬁ = 22'\/(0:2)) + cl)(x% T :c%) Tl
1

—2i arctanh (\/(cg +c1) (2% + a3) + 1) + c1(zo +u) +
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14.

15.

16.

+c3x3 + 4.

<L3 — P34+ 2aXg, a> 0) :
Ansatz
(o + u)? + 430 = (W1, wa,wW3),

T
wy = (22 + 23)Y?,  wy = 2 arctan — — xg — u,
T2

w3 = 2(xg + u)3 4+ 1202 (¢ — u) + 1203(20 + ).

Reduced equation

wipt+4a?pi—144a’ pwipi+48a 2wl paps3+160w? = 0.

(Ps) :

Ansatz

(25 — 3 — u?)/? = p(wr, w2, w3),
w1 =1, W =22, W3=2Iy+ U.

Reduced equation

plppl + s + 2wsps — ¢) = 0.
Solution of the reduced equation
p=0.

Solution of the eikonal equation

2 2 2
xg— x5 —u” = 0.

<P3 - 2X0> .
Ansatz

1
6(330 +u)? + z3(w0 + 1) + 20 — U = (W, wa,w3),
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17.

18.

Wi =T, wo =Ty, w3=(rg+u)?+4dzs.
Reduced equation

@3 + @3 + 1693 — wg = 0.

Solution of the reduced equation

1
p(wr, w2, w3) = crwy + cows — 6(&}3 —c? — 3% 4 cs.

Solution of the eikonal equation

1
6(x0+u)3+a:3(xo+u) +x0—u=

1
= (w0 + w)? + 4wz — ¢ — 03)3/2 +c121 + Ccaxo + C3.

<P3 — X1> .
Ansatz

z1(zo + u) — 23 = p(w1, wa, w3),

w1 =To, wWo=2x0+u, ws=r3+2u(zo+u).
Reduced equation

©% + dwapaps + 4(wi + ws)p3 — 4pps + w3 + 1 =0.

<X0 =+ X4> :
Ansatz

u = @(Wl, w2, w3)a

w1 = I, w2 = T2, w3 = I3.

Reduced equation

P+ P+ +1=0.
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19.

Solution of the reduced equation

1/2

o(wy,wa,ws) = z(c% + c% + 1)/ 2wy + cows + c3ws + ¢y.

Solution of the eikonal equation

u = i(c3+ c% + 1)1/2.r1 + cow9 + c3x3 + 1.

In one case, the reduced equation is a two-dimensional

PDE.

(Xaq)
Ansatz

x3 = (w1, ws, ws),

w1 =21, Wy =1y, W3=2Io+ U.
Reduced equation

Y1+ o3 +1=0.

Solution of the reduced equation

p(wr,wa, w3) = —i(c3 + 1)Y2w) + cown + c1 + f(ws).

Solution of the eikonal equation

xy = —i(c + 1)1 221 + cawa + 1 + fwo + ),

where f is an arbitrary smooth function.

There are no reductions

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct an ansatz, which re-
duces the eikonal equation. More details on this theme can
be found in Chapter 2.
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3.2 Classification of symmetry reduc-
tions using two-dimensional noncon-
jugate subalgebras of the Lie algebra
of the Poincaré group P(1,4)

In this section, we present the results of the classification
of symmetry reductions of the eikonal equation for all non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
of dimension 2.

3.2.1 Lie Algebras of the Type 24,

In Chapter 2, we have presented 37 ansatzes, which are
invariant with respect to the two-dimensional nonconjugate
subalgebras of the type 2A;.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reduction to PDEs

1. (G) @ (Ls) :
Ansatz

(3

—u?)1/2 = p(wr,wa),
w1 = x3, wy = (f + 23)1/2,
Reduced equation

O+ @3 —1=0.

Solution of the reduced equation

SO(WLWQ) = (1 - C%)l/2w1 + cows + 1.
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Solution of the eikonal equation
(z2 - w2 = (1 = )5+ co(x? 4 23)Y% 4 ¢y
In what follows,

dp
;= , ) — 172
v ow; !

G+ aXs3, a>0)d (Ls):

Ansatz

x3 — aln(zo +u) = p(w, ws),

o= @+ = (o )2
Reduced equation

w9 (wg(gof - go% +1)— 204902) =0.

Solutions of the reduced equation

2 <\/(C% + 1Dws + a? + a)

wi,ws) = aln _
90( 1 2) w%

—/(?+ w2 + a2+ clw +c2, we=0.

Solutions of the eikonal equation

z3 —aln(zo+u) = —\/(cF + 1)(22 —u?) + a2 +
2 <\/(C% +1)(z3 — u?) + a? + a)

2 _ .2
Ty u

te1y/2? + a5 4+ o, T3 —u? =0.

+aln +
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3. (G)® (Ls+ X3, a>0):

Ansatz

X1
x3 + aarctan — = @(wy, wa),
X2
wy = (23 + 22 we = (a2 —u?)V2

Reduced equation
(¢ = 93 + Dwi +a* = 0.

Solution of the reduced equation
!

+
NCEDr

++/(c3 — Dw? — a? + cows + c1.

o(wi,w2) = aarctan

Solution of the eikonal equation

I «
T3+ aarctan — = « arctan +

= V@ - D@+ a3) - a?
tea(ad — a2+ (G- D@l T ad) — a® + .

4. (G+aXs, a>0)®(Ls+ X3, f>0):
Ansatz
(23 — u?)'/? = p(wr,wa),

w1 = r3—aln(xg+u)— B arctan ﬂ, wy = (v} +a3)"/2.
x1

Reduced equation

© (w3 (93 + 5 — 1) — 2aw3ep1 + Bppi) = 0.

Solution of the reduced equation

p=0.
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Solution of the eikonal equation

2 2
x5 —u” = 0.

(L34 MG, A>0) @ (X3) :

Ansatz
(23 + 23)1/? = p(wr,wa),

wy = (22 —u®)Y?,  wy = In(zo + u) + Narctan z—;

Reduced equation

wl()\lego% — 902w1<,0% - 2902901902 + SOQWl) = 0.

Solution of the reduced equation

wlzo.

Solution of the eikonal equation

w%—uQZO.

AG) @ (X)) :

Ansatz

2

(CEO - u2)1/2 = QO(UJl,CUQ),

w1 = T9, w9 = I3.
Reduced equation

pf+ps—1=0.

Solution of the reduced equation

1/2

SO(W17W2) = (1 - C%) w1 + cowg + 1.

Solution of the eikonal equation

(x% — uz)l/2 =(1- 03)1/2332 + cox3 + 1.
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7. (G+aXy, a>0)d (X;):
Ansatz
r3 = (w1, w2),
wy = (23 — u2)1/2, wo = w9 — aln(zg + u).
Reduced equation

w1 ((¢1 — 3 — 1)wi — 20p102) = 0.

Solutions of the reduced equation
(676

_|_
V(63 + )wi + c30?
+acy In(wy) + cawg — /(3 + 1w + c3a? + c1.

w1 =0, p(wi,ws) = acg arctanh

Solutions of the eikonal equation

22 —u?=0, z3+/(3+1)(2—u2)+ a2 =
(676
+
V(e +1)(25 — u?) + a?c3
(676)] To— U

—1
+ 2 nx0+u

= aco arctanh

+ cox2 + 1.

8. <L3> D (Pg + 03> :

Ansatz

(u? 4 22)Y? = p(wy, wo),
w1 =1x0, wy=(x?+x3)/2
Reduced equation

(¢l — 03— 1)p* =0.

Solutions of the reduced equation

o(wi,we) = (3 + 1Y% +cowa +¢1, ¢ =0.
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10.

Solutions of the eikonal equation
(u? + 23)1/? = (3 + 1)V 20 + ca(a? + 23)/2 + a1,

u2+x§:0.

(L + a(Xo+ X4), a>0) P (Ps+ Cs) :

Ansatz

I
xo — avarctan — = p(wy, w2),
T2

o1 = (B B2, = (02 )
Reduced equation

((pF + #3 = Dwi + a®)wi = 0.

Solutions of the reduced equation

p(wi,w) = /(1 — 3)wi —a? +

8}
+a arctan 4+ cowo + c1, wo = 0.

V(1= B)wi —a?

Solutions of the eikonal equation

I «
ro — aarctan — = o« arctan +
2 VI- Q@+ a)) - a?

+ea/u? +af + /(1 - 3)(af +3) — a? + ey,

u2+x§:O‘

(L3 + a(Xo + X4), a>0) DB (Ps+ C5 4+ 26(Xo + X4),
g >0):
Ansatz

z xs3
aarctan — + farctan — — z¢ = p(w1,w2),
X9 u

or = (@ + )%, wn = (02 + )
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11.

12.

Reduced equation

wf (W3R (3 + 9} — 1) + Bl + a%wd) = 0.

Solution of the reduced equation

WQZO.

Solution of the eikonal equation

u2+x§:O.

<L3 -+ %(Pg 4 Cg)> b <X0 -+ X4> :

Ansatz

T I3
arctan — — arctan — = (w1, w2),
I u

o= (@ +a), w = @+ D
Reduced equation

wy (wiwd (o} + ¥3) + w? + w3) =0.

Solution of the reduced equation

OUQ:O.

Solution of the eikonal equation

u? + 23 = 0.

A
<L3+§(P3+Cg), 0<)\<1>@<X0+X4>:

Ansatz

I x3
Aarctan — — arctan — = p(wy,w2),
X9 u

wi = (23 4+ 22, wy = (u® + 23)V/2
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13.

14.

Reduced equation

wh (wiw3(p? + ¢3) + w? + Nwi) =0.

Solution of the reduced equation

Wy = 0.
Solution of the eikonal equation
u? + 23 =0.

It should be noted that the next results are obtained
with the help of nonconjugate subalgebras of the type
2A; of the Lie algebra of the extended Galilei group

G(1,3) C P(1,4).

(Lg) @ (Ps) :

Ansatz

(aF — 23 — u?)'/? = p(wr,wa),

wi =204+ u, wy = (x?+x3)2
Reduced equation

P(pps + 2wi1p1 — ) = 0.
Solution of the reduced equation

p=0.

Solution of the eikonal equation

2 2 2 _
rg— x5 —u” = 0.

<L3 — P3> EB <X4> .
Ansatz

o+ u = @(wi,ws),
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15.

16.

3

I
wi = (x4 23)Y?,  wy = arctan — + .
To Xo+u

Reduced equation
P*(P*wipt + 9?93 +wips) = 0.
Solution of the reduced equation

e =0.

Solution of the eikonal equation

U = —2xp.

<L3> b <X0 + X4> :
Ansatz
U = 90(601, w2)7

1/2
/, W9 = I3.

w1 = (22 + 23)
Reduced equation

I+ ps+1=0.

Solution of the reduced equation

(w1, w2) = i(c3 + 1)1/2w1 + cows + 1.

Solution of the eikonal equation

u=1i(c3 +1)Y2(2? + 23)V/2 + cox3 + 1.

<L3 + Oé(XO + X4), o > O> D <X4> :
Ansatz

T
xo + u — cvarctan — = p(w,ws),
Z2

w1 =x3, Wy = (ﬂi% +$%)1/2.
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17.

Reduced equation

w3 (93 + ¢3) + a® = 0.

Solution of the reduced equation
(w1, w2) = crwy + iy/Ews + a? —

. o
—iaarctanh — + co.
ciws + a?

Solution of the eikonal equation

T .
u = aarctan — +i\/c2(z? + x3) + a2 —
T2

. «
—iaarctanh — > — xo + c1x3 + Co.
Ve (x? + 22) + a?

(L3 + aXs, a>0)® (Xo+ X4) :

Ansatz

X1
x3 + aarctan — = @(wy, w2),
X2

wi =u, wy=(z?+ )2
Reduced equation
(©? + 03 + 1)w3 +a? = 0.

Solution of the reduced equation
Q

NCES
—iy/( 4+ 1w + a2 + cywy + ca.

¢(w1,ws) = iavarctanh

Solution of the eikonal equation

2 1 2 2 2
u = g arctan x1 \/(Cl + )(ml + xg) + « 1T
“ zo+/(c] +1)(2% + 23) + o + iz
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18.

19.

1 T
/(@ DET+a3) +a? + 7 e
1 1

<L3 —|— 2X4> @ <X3> .
Ansatz

x2
xo — u + 2arctan — = p(wy,w2),
X1

wi =x0+u, w=(x]+ 5’3%)1/2-
Reduced equation
(¢3 + 41wy +4 = 0.

Solution of the reduced equation

(w1, w2) = crwy — 2iv/crwi + 1+

1
+27 arctanh ———— + ¢9.
clwg +1

Solution of the eikonal equation

T 1
To — u + 2arctan 22 _ 9 arctanh —

T Ver(@? +23) + 1
—2iy/c1(2? + 23) + 1+ 1 (wo + u) + co.

<L3 — P34+ 2aXy, a # 0> ©® <X4> :

Ansatz

1
o + u — 2carctan — = ¢(wy, w2),
x2

Wy = (x% + x%)l/Q, wo = (z0 + u)? + daxs.

Reduced equation

wi(p? 4+ 16a%p3) + 402 = 0.
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20.

21.

Solution of the reduced equation

(w1, w2) = 2ia/4csws + 1 —
1

—2icarctanh | ————
4c%w% +1

> + cows + C1.

Solution of the eikonal equation

To + u — 2 arctan o 22'04\/463(33% + x%) +1-

x2
! +
Vac (23 +23) +1
+c2 ((330 + u)2 + 404:L‘3) +cy.

—2iaarctanh

<L3 + 2X4> (&) <P3 — 26Xy, B> 0> :
Ansatz
(o + u)? + 4Bx3 = p(w1, wa),

w1 = (I% + x%)1/2,

1
we = 4 arctan iz—; —2B(xo —u) — %(3:0 +u)3 —

—2x3(x0 + u).

Reduced equation

wipt 4+ 4(48% — pw?)e3 + 165%wi = 0.

<L3 + 2X4> b <P3> :

Ansatz
2

Y5 4 2arctan L 4 2u = o(wi,wa),
To+u T2

wy = (22 + 22)V2, wy = 29 + u.
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22.

Reduced equation

w3 ((p? — 42 + wi +4) = 0.

Solutions of the reduced equation

wo =0, @(w,ws)=2y(c2—1w? -1+

+2arctan + cowg + 1.
(CQ — 1)&)% —1

Solutions of the eikonal equation

2
L3

To + U

=2/(c2 = 1)(x] +23) — 1+

x
U = —xo, +2arctan—1+2u:
€2

1
Vi = 1D)(z{+a3) -1

+2 arctan ( ) + ca(zo+u) + c1.

(L3) ® (P3 — 2X)) :

Ansatz

é(xo +u)? + z3(z0 + u) + 20 — u = P(wr,w2),
wy = (22 + 222, wy = (zo + u)? + 4as.
Reduced equation

1 + 1603 — wz = 0.

Solution of the reduced equation

1
SD(WLWZ) = Clwy — E(WQ - C%)?’/2 + co.

Solution of the eikonal equation

1
g(xo—l—u)?’—i-xg(xo-l-u) +xo —u=
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23.

24.

1
= c1\/73 + 23 — 6 ((zo + u)? + 4a3 —c%)3/2 + c2.

(P1) @ (P,) :

Ansatz

o+ u = @(wy,ws),

w1 =3, we=(13—12%— 23— u2)1/2.

Reduced equation

wa(wapT — waph + 2pp2) = 0.

Solution of the reduced equation

OUQZO.

Solution of the eikonal equation

2_ 2 .2 2
x5 — 7 — x5 —u“ =0.

<P1 — X3> P <P2> :
Ansatz

(xd — 2% — 23 — u?)1/? = (w1, w2),
x1
af;o+u'

w1 =9+ U Wy =2x3—

Reduced equation

wie ((pwi +¢)es + 2wipr — pwi) = 0.
Solutions of the reduced equation

w1 =0, @o=0.

Solutions of the eikonal equation

u=—x9, x3—1%—23—-u?=0.
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25. (Py — X3) ® (P —yX2 — X3, >0,7y>0):

Ansatz
i a3

4+ 2u = (w1, w2),
To+u xo+uty plwr,ws)

Pra  _m
To+Uu-+y To + U

w1 =29 +u, wy= xs.

Reduced equation

(wi +7)%wf (w1 +7)? (41 = pr)wf + (Wi +1)93) +
+52w%g0%) =0.

Solutions of the reduced equation

2 2
g, B +1)w1+’7+
w1 w1 + 7y

w1 = 07 w1ty = 07 Qo(wlan) = -
+(c3 4+ 1wy + 2cows + c1.
Solutions of the eikonal equation

. . xl(xl — 262)
u=-%0, U=-To—7, —

o+ U
(w9 — Beo)? + 3 ye3 B
T+ U+ (wo + u)(zo +u+7)

—(c3 + 1) (2o + u) + 2273 + 2u + ¢ = 0.

26. (Pl — X3> D <P2 —vXo, v > 0> :

Ansatz
2 2
L T
+2u = p(wy, w
Co+u | zot+utn <P( 1, 2),
x
w1 =29+ u, wy= — 3.
o+ u
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27.

Reduced equation

w? (w1 +7)* (w4 1)p3 + 4w?(1 — 1)) = 0.

Solutions of the reduced equation

w1 =0, w+7=0,
2

C
p(wr,ws) = (¢ + Dwy — W—Q + 2cowa + .
1

Solutions of the eikonal equation

(z1 — c2)? 3

To + U To+Uu-+y

U= —Tp, U=—To—7,

+2u = (c3 + 1)(xo + u) — 2c273 + c1.

(P1) ®(Py— X9 — BX3, f>0):

Ansatz

2 2

L1 Ly

2u = p(wi,ws),
To+u xo+u+1+ plwr, ws)
x2

w1 =2 U, Wo =x3— f—————.
1=T0+ U, wy =173 @m+u+1

Reduced equation
(wi +1)%wi (w1 +1)% + B%)p3—
—4(0.)1 + 1)2(g01 — 1)) =0.

Solutions of the reduced equation

wi+1=0, w; =0,

p(wr,w2) = i 1) w1+ cows — o (w1 + 1)+ c1.
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28.

29.

Solutions of the eikonal equation

u=—1—xg,

X (zo +u) —

2 2
u = —xg, l —|—2u:(c—2+1

To+u 4

(Bea + 2x9)?
d(xog+u+1)

+ cox3 + c1.

(P1) @ (P — Xo)

Ansatz

2
L1

2
)

To+u x9t+u+1l

+ 2u = (w1, ws),

w1 = X9+ U, wp =2x3.

Reduced equa

tion

(w1 + D)4t (p3 — 41 +4) = 0.

Solutions of the reduced equation

w1 +1=0,

p(wr,w2) = (

w1=0,
2

©
Z—I—l w1 + cowa + 1.

Solutions of the eikonal equation

u=—1-—xg,

G 73

U = —To, +
Tzo+u xot+u+1

2
c
= (—2+1> (xo + u) + cazs + c1.

4

(P5) @ (X1) :

Ansatz

(2§ — 2§ —u?)'/? = p(wr, wa),

w1 = T2, Wo = Ty + U.
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30.

31.

Reduced equation

plppl + 2waps — ) = 0.
Solution of the reduced equation
p=0.

Solution of the eikonal equation
x% - x% —u? =0.

<P3 — X2> EB <X1> N

Ansatz
x3

To + U

x9 — = p(w1,w2),

w1 =20 +u, we=(z3—123— u2)1/2.

Reduced equation

W%W2(2W§901902 + W%W(SO% —1) —ws) = 0.

Solutions of the reduced equation

wlzo, CL)Q:O.

Solutions of the eikonal equation

U = —xo, m%—x%—uzzO

(P3s —2X0) ® (Xy) :

Ansatz

(w0 + u)? + a3 = (w1, ws),
W] =1, Wo = Ta.
Reduced equation

©? + 3 +16 = 0.
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Solution of the reduced equation

(w1, ws) = Fiy/c3 + 16 wy + cows + cy.
Solution of the eikonal equation

u = :I:\/Cng —4xs —i\/c%+16 r1 + ¢ — xg.

32. <P3 - 2X0> ) <X1> :

Ansatz

1
6(:1:0 +u)3 + x3(mo + 1) + 20 — u = P(wr, wa),

w1 = T2, wy = (1o + u)? + 4x3.
Reduced equation

03 + 1693 — wy = 0.

Solution of the reduced equation

1
(w1, w2) = crwy + g(wz — )32 4 ¢y,

Solution of the eikonal equation
1
(w0 4+ u)3 + x3(w0 + u) + 29 — u = c129 +

6
+= ((zo + u)? + 4z — C%)B/2 + co.

| =

Reduction to ODEs

1. <L3> &P <X4> :
Ansatz
(23 + 23)1/% = (w1, wa),

w1 =x9+uU, wy=1x3.
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Reduced equation

Y3+1=0.

Solution of the reduced equation

(w1, w2) = —iws + f(w1).

Solution of the eikonal equation
(23 + 23)1? = —iz3 + f (0 + ),

where f is an arbitrary smooth function.

. <L3 + aXs3, a> O> © <X4> :
Ansatz

I
x3 + aarctan — = @(wy, wa),
T2

wr =m0 +u, w=(}+a3)/2
Reduced equation

wi(p3 +1) +a?=0.

Solution of the reduced equation

(w1, ws) = —iy/a? + w3 + iaarctanh I S

a? + wj
+f(w1).
Solution of the eikonal equation
x
3 1 qarctan = = —iy/a? + 2% + 23 +
Z2
o

+icvarctanh 3 " + f(xo +u),
2

+ 2} +

where f is an arbitrary smooth function.
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3. <P3 - X1> D <X4> :
Ansatz
T3
o+ U
w1 = T2, W9 =Ty -+ U.

] — = (w1, wa),

Reduced equation

w3 (w3(p +1)+1) =0.

Solutions of the reduced equation

) 1
wy =0, p(wr,ws) = —iwry /F + 1+ f(w2).
2

Solutions of the eikonal equation

s ‘ L g
u=—x9, T — = —ix9 | —
0 T V(o + u)?

+f(zo + u),
where f is an arbitrary smooth function.

4. <P3> D <X4> :
Ansatz

z1 = p(wr,w2),
w1 = T2, W9 =Ty + U.
Reduced equation

eI +1=0.

Solution of the reduced equation

p(wi,ws) = iwr + f(wa).
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Solution of the eikonal equation
x1 = ixe + f(zo + u),

where f is an arbitrary smooth function.

(X)) @ (Xy)

Ansatz

z3 = (w1, w2),

w1 =29 +u, wy=To.

Reduced equation

Y3 +1=0.
Solution of the reduced equation
p(wr,w2) = —iwg + f(w1).

Solution of the eikonal equation
x3 = —ixe + f(zo + u),

where f is an arbitrary smooth function.

There are no reductions

From the invariants of the remaining five nonconjugate

subalgebras it is impossible to construct ansatzes, which re-
duce the eikonal equation. The details on this theme can be

found in Chapter 2.

3.2.2 Lie Algebras of the Type A,

In Chapter 2, we have presented six ansatzes, which are

invariant with respect to two-dimensional nonconjugate sub-

algebras of the type As.

109



By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reduction to PDEs
1. (-G, Ps):
Ansatz
(2§ — 2§ — u?)/? = p(wr, wn),
W] =11, w2 = T.
Reduced equation

(0 + 03— 1)p* = 0.

Solutions of the reduced equation
lwi,wa) = —\/1 = w1 +cowp+c1, ¢=0.

Solutions of the eikonal equation

(22 — 22 —u®)V2 = —\/1 — GBxy + caa + ¢y,

2 2 2 _
rg— x5 —u” =0.

1
2. <—G— XLg, P3, A > O> :

Ansatz
(g — 23 — u?)V/? = (w1, wa),

wy = (22 + 22)Y2,  wy = In(z¢ + u) + Xarctan n
T2

Reduced equation

PN + pwipt — pw? + 2wips) = 0.
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Solution of the reduced equation
p=0.
Solution of the eikonal equation

2 2 2 _
x5 — g5 —u* =0.

1
. <—G—XL3, Xy, )\>0>:

Ansatz

In(zo + u) + Aarctan o o(wi,w2),
Z2

w1 =3, Wy — (.CE% +$%)1/2.

Reduced equation

w3 (9t +¢3) + A2 =0.

Solution of the reduced equation

A
p(wy,ws) = iAarctanh ———— —
( ) Aws + N2

—iy/Aws + A2 + ciwy + ca.

Solution of the eikonal equation

In(zp + u) = i\ arctanh A -

Vet(al +a3) + A2

—iy/c3} (2?3 + 23) + A2 — Xarctan e
T2

+c1x3 + 2.

. <—G—O_/X1, Xy, Oé>0>:

Ansatz

1 —aln(zo +u) = p(w, ws),
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w1 = T2, W2 = I3.
Reduced equation

eI+ p3s+1=0.

Solution of the reduced equation

o(wr,ws) = i(c3 + 1)1/2w1 + cows + ¢1.

Solution of the eikonal equation

71— aln(zg +u) =i(c3 + 1)1/2172 + cow3 + c1.

1
. <—X(L3 —f—/\G—f—an), Xy, a>0,A> 0> :

Ansatz

In(zo 4+ u) + Aarctan o o(wi,wa),
Z2

Z1
wy = (22 +23)Y?,  wy = a3 + carctan —.

Z2
Reduced equation
Wi (p] + 93) + (a2 = A)? = 0.
Solution of the reduced equation
o(wi,wz) = —i(acy — A) arctanh acy — A +

Vet + (acy — A)?
+iy/cAw] + (aca — A\)2 + cows + 1.

Solution of the eikonal equation

In(wg + u) = iy/c2(z% + 23) + (g — \)2 —

) acy — A
—i(acg — A) arctanh +
V(@ +a3) + (acy — A)?

x
+(acg — A) arctan 1 cox3 + cq.
)
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6. (-G —aXy, P3, a>0):

Ansatz

x| — aln(a:o + u) = g0(w1,w2),

2 2 2\1/2
Wy = Ta, wgz(xo—xS—u)/.

Reduced equation

wWo (wz(gof — go% +1)— 2ozg02) =0.

Solutions of the reduced equation

2 1 2 2
wo =0, p(wi,w2) = aln (204\/(01—'_ )w22+a +Oé>—

Wy

—/ (& + w3 + a? + ciw; + ca.

Solutions of the eikonal equation

w3—22—u?=0, x1—aln(rg+u)=

V(e + (x5 — 23 —u?) + a2 +a
=aln <2a 3 —

2 .2
Ty Z3 u

—/ (& + 1) (22 — 22 —u2) + a2 + 129 + ca.

There are no reductions

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct ansatz, which reduces
the eikonal equation. The details on this theme can be found
in Chapter 2.
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3.3 Classification of symmetry reduc-
tions wusing three-dimensional non-
conjugate subalgebras of the Lie al-
gebra of the Poincaré group P(1,4)

In this section, we present the results of the classification
of symmetry reductions of the eikonal equation for all non-
conjugate subalgebras of the Lie algebra of the group P(1,4)
of dimension 3.

3.3.1 Lie Algebras of the Type 3A4;

In Chapter 2, we have presented 25 ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type 3A4;.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to algebraic equations

The invariants of five subalgebras allow us to construct
the ansatzes, which reduce the eikonal equation to algebraic
equations.

1. <P1 — v X3,y > 0> D <P2 — X9 —0X3,0 # O> ©® <X4> :
Ansatz
x3(wo +u)? — (yo1 + 226 — 23) (w0 + u) — Y21 = P(W),

w=xg+ U.
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Reduced equation
w4 2w + (P + 2+ D+ 272w+ 42 =0.

Solution of the eikonal equation
(o 4+ u)* +2(xg +u)® + (72 + 6% + 1) (20 +u)? +
+272(zo +u) + 7% = 0.

(PL—=7X3,7>0) @ (P — X2) @ (Xy) :
Ansatz
z3(zo +u)? — (yr1 — x3) (20 + 1) — Y71 = (W),

w = T + Uu.

Reduced equation
(w+ 1)2(w? +42) = 0.

Solutions of the eikonal equation

u=—1—xz0, (g +u)?+~%=0.

. <P1> &, <P2 — X9 —0X3,0 > 0> D <X4> :
Ansatz

x3(xp + u) — 20 + x3 = p(w), w=xzo+ u.

Reduced equation
wr+2w+82—-1=0

Solution of the eikonal equation

(o +u)* +2(zo +u) + 62 +1=0.

As we see, the left hand sides of the Ansatzes (1)—(3) are
polinomials in invariant w = x¢ + u. The reduced equa-
tions are also polinomials in w, but with the constant
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coefficients. The solutions of the eikonal equation are
also polinomials in variable zg+ v with the constant
coefficients.

AP = X3) ® (P2) © (X4)

Ansatz
Tl

x3—x0+u:go(w), w = x0 + u.

Reduced equation

(14 w?)w? = 0.

Solutions of the reduced equation

1+w?=0, w=0.

Solutions of the eikonal equation

1+ (zo +u)? =0, u= —mo.

. <P3 — X2> EB <X1> EB <X4> .

Ansatz
& ( )
x plw), w xo + u.
2 i) +u 0

Reduced equation

(w? + 1w? = 0.

Solutions of the reduced equation

w4+1=0, w=0.

Solutions of the eikonal equation

(w0 +u)?+1=0, u=—x0.
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It should be noted that subalgebras (1)—(5) belong to
the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

Reductions to linear ODEs

The invariants of six subalgebras allow us to construct the
ansatzes, which reduce the eikonal equation to linear ODEs.

1. <P1> D <P2> b <X3> :

Ansatz

2 .2 .2 .2 _ —
xp—x]— 25 —u” =pw), w=zo+u.

Reduced equation

we' — = 0.
Solution of the reduced equation
o(w) = quw.

Solution of the eikonal equation

23— 23 — 23 —u? = c1(wo + u).

2. <P3> 2, <X1> b <X2> :
Ansatz

2

3 — 23 —u?=pw), w=mz+u.

Reduced equation

we' —p =0.

Solution of the reduced equation

o(w) = cw.
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Solution of the eikonal equation

23 — 23 —u? = c1(zo + ).

(P () © () :
Ansatz

2 2

2 2 _ 2
TH—T]—T5 — T3 —U

=p(w), w=uz0+u.

Reduced equation
we' — = 0.
Solution of the reduced equation

o(w) = quw.

Solution of the eikonal equation

2 .2 .2 .2 2
x5 —x] — x5 — x5 —u® = c1(zo + u).

Let us note, that in the cases (1)—(3) we obtained the
same reduced equations.

A P1) & (P — X2) © (X3)

Ansatz
2 2 2 2
— = w w =X+ u.
:1:0—|—u x0+u—|—1 90( )7 0

Reduced equation

¢ (w+ 1)kt =0.

Solutions of the reduced equation

olw)=rc, w+1=0, w=0.
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Solutions of the eikonal equation

2 — 22 — u? x2

0 1 _ 2 =
xo+u xo+u+1 ’

u=—-1—x9, u=—x.

. <P1>€B<P2—OéX2,0é>0>€B<P3—”)/X3,’77é0> :

Ansatz
2 2 2
T T T
2u 4+ —— ¢ 2__ 4 S — = p(w),
To+u Tot+tut+oa ToF+UuU+Yy
w =X+ U.

Reduced equation

wHw+7) 4w+ a)(e — 1) =0.

Solutions of the reduced equation

w=0, w+y=0, w+a=0, ¢pw =w+ec

Solutions of the eikonal equation

u=—-Tg, U=-—Tog—7, U=—T)—Q,

2u + x% x% m% =x9t+tu-+c
ro+u Tot+tut+a Tot+u+y

AP & (P — aXo,a > 0) & (Ps) :

Ansatz

2u+x%+$§+ 75 =p(w), w=umz0+u.

o+ U To+ U+ o

The reduced equation

whw + a) (¢ —1) = 0.
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Solutions of the reduced equation

w=0, wta=0 ¢pw =w+ec

Solutions on the eikonal equation

U= —rg, U= —Ty)— &,

r} + 3 T3

2u +
To + U To+ U+

=9+ u-+c

It should be noted that subalgebras (1)-(6) belong to the
Lie algebra of the extended Galilei group G(1,3) C P(1,4).

Reductions to equations, which can be splitted on two
linear ODEs

Taking into account the invariants of nine nonconjugate
subalgebras, we constructed the ansatzes, which reduced the
eikonal equation to those, which could be splitted on two lin-
ear ODEs.

1. (X4) @& (Xo) ® (Xy) :
Ansatz

To+u=pw), w=uzs.

Reduced equation
(¢')? =0.
Solution of the reduced equation

p(w) = c1.

Solution of the eikonal equation

U =-c — ao-
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2. <P1> D <P2 — X2> D <X4> :
Ansatz

xo+u=pw), w=uz3.

Reduced equation
(¥")? =0.

Solution of the reduced equation

p(w) = c1.

Solution of the eikonal equation

U =Ccyp — xg.

3. (L3) © (X3) @ (Xy) :
Ansatz

zo+u=pw), w=(23+x3)2
Reduced equation

(¥")? =0.

Solution of the reduced equation
p(w) = 1.

Solution of the eikonal equation

U= c| — XQ.

4. (P5) ® (X1) @ (Xy) :
Ansatz

To+u=pw), w=cxs.
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Reduced equation
(") =0.
Solution of the reduced equation

p(w) = 1.

Solution of the eikonal equation

U =Ccyp — xg.

- (L3) & (P3) @ (Xy) :

Ansatz

o+ u=pw), w=(2?+az3)2
Reduced equation

(") =0.

Solution of the reduced equation
o(w) =c.

Solution of the eikonal equation

U =Cc — ao-

A(P1) @ (P) @ (Xy)
Ansatz

xo+u=¢pw), w=urs.

Reduced equation
(¢)?=0.
Solution of the reduced equation

pw) = c1.
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Solution of the eikonal equation

U= c| — XQ.

Let us note that, in the cases (1)—(6), we obtained the
same reduced equations. The solutions of the eikonal
equation are also the same.

AG) ® (X2) & (X1) :
Ansatz

(23 —uH)Y2 = p(w), w=uzs.

Reduced equation

(¢ =1)(¢" +1) = 0.

Solutions of the reduced equation

p(w) =cw+c1, € =+£1.

Solutions of the eikonal equation

(22 — u?)Y/? = exz 41, € = £1.

. {G) ® (Lz) & (X3) :
Ansatz

(af —u))? = p(w), w=(af+a3)">.

Reduced equation

(¢ =1)(¢"+1)=0.

Solutions of the reduced equation

p(w) =ew+c1, € = 1.
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Solutions of the eikonal equation

(22 —u)? =e(@? + 23V 4+ ¢1, e = +1.

9. <P3 - 2X0> @D <X1> D <X2> .

Ansatz

1
6(:1:0 +u)3 4+ w3(20 +u) + 10 — U = P(W),

w = (zo +u)? + 4x3.

Reduced equation

16(¢")? —w = 0.

Solutions of the reduced equation

p(w) = %wg/z +c1, e = %1,

Solutions of the eikonal equation

1
5 (@0 +u)* +wy(wo + ) + w0 —u =

((zo +u)* + 43:3)3/2 +c1, e = %1,

(=22 N0

Reductions to nonlinear ODEs

From the invariants of five nonconjugate subalgebras we
constructed the ansatzes, which reduced the eikonal equation
to nonlinear ODEs.

1. <G + aXs3, a0 > 0> ©® <X1> ) <X2> :

Ansatz

z3 —aln(zg+u) = p(w), w=zxf—u’.
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Reduced equation

dw(p")? + dag’ — 1 = 0.

Solutions of the reduced equation

<a2+w)1/2 o

o(w) = e(a?+w)Y/? —ecaarctanh B In(w)+
«
+c1, € = 1.
Solutions of the eikonal equation
x3 —aln(zg +u) = e(a® 4z —u?)'/? - % In(xg — u?) —
2.2 ,2\1/2
—caarctanh (0" +ap — ) +c1, e = £1.

«

. <L3> D <P3 + Cg> D <X0 + X4> :
Ansatz

(@3 4+ )2 = plw), w = (2} + a2

Reduced equation

1+ (¢)*)e* =0.

Solutions of the reduced equation

p(w) =dew+c1,e = £1; p =0.

Solutions of the eikonal equation

(22 +u?)V? =ie(a? + 23?2 + 1,6 = £1; 22 +u? = 0.

AL+ a(Xo+ X4),a > 0) & (X3) ® (Xy) :
Ansatz

To+u+ aarctan% = <p(w), w= (-T% + 37%)1/2'
X1
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Reduced equation

w?(¢')? 4+ a? = 0.

Solutions of the reduced equation

p(w) =icaln(w) + ¢, € = £1.

Solutions of the eikonal equation

5
xo+u+ aarctan -2 = i; In(x? + 23) + ¢y, € = *1.
I

. <P3 — 2X0> @ <X1> @ <X4> .
Ansatz

(mo +u)? + 423 = p(w), w = x9.

Reduced equation

(¢")2 416 = 0.

Solutions of the reduced equation

p(w) = dicw + ¢1, € = £1.

Solutions of the eikonal equation

(w0 + u)? + da3 = diexg + 1, € = 1.

. <L3> &P (—Pg -+ 2X0> &P <2X4> :
Ansatz

(w0 +u)? +das = p(w), w = (2% +23)1/2

Reduced equation

(¢')* +16 = 0.
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Solutions of the reduced equation

p(w) = dicw + 1,6 = +1.

Solutions of the eikonal equation

(20 + u)? + dag = die(x? + 23)V/2 + ¢1, e = £1.

There are no reductions

From the invariants of the remaining six nonconjugate sub-
algebras it is impossible to construct the ansatzes, which re-
duce the eikonal equation. The details on this theme can be
found in Chapter 2.

3.3.2 Lie Algebras of the Type A; & A,

In Chapter 2, we have presented seven ansatzes, which
are invariant with respect to three-dimensional nonconjugate
subalgebras of the type As @ A;.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to equations, which can be splitted on two
linear ODEs

Taking into account the invariants of two nonconjugate
subalgebras, we constructed the ansatzes, which reduced the
eikonal equation to those, which could be splitted on two lin-
ear ODEs.

L. <_Ga P3> ® <X1> :
Ansatz

(2f — 23— u?)'? = p(w), w=u2.
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Reduced equation

(¢ —1)(¢" + 1)p* = 0.

Solutions of the reduced equation

olw)=cw+c, ¢=0 ==l

Solutions of the eikonal equation

(2 —23—u?)'/? = cxgter, 23—23—u?=0, e==+1.

. <—G, P3> P <L3> :
Ansatz

(i — i — )2 = plw), w= (o} +aF)2

Reduced equation

(¢ —1)(¢' + 1)p* = 0.

Solutions of the reduced equation

plw)=ew+c, =0, e==I.

Solutions of the eikonal equation
(22 — 23 —u®)V? = e(a? + 23)V/2 + ¢4,

w%—x%—uQZO, e ==l1.

It should be noted that subalgebras (1) and (2) do not be-

long to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

Reductions to nonlinear ODEs

From the invariants of five nonconjugate subalgebras we

constructed the ansatzes, which reduced the eikonal equation
to nonlinear ODEs.
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1. <— (G + OzXQ), P o > 0> ) <X1> :
Ansatz

zg —aln(zg+u) =pw), w=(xj—z5—u

Reduced equation

w (w(¢')? + 2a¢’ —w) = 0.

Solutions of the reduced equation
w=0, pw)=c(a®+w?)? - aln(w) —

Q@
—saarctanhm +c1, € = %1.

Solutions of the eikonal equation
w3 — 23 —u?=0, x3—aln(rg+u)=

= e(:z;% — :1;% —ui+ 042)1/2 — %ln(m% — x% —u?) —
e

(23 — 23 — u? + a?)1/2

—caarctanh +c, ==+l
1
2. <—XL3—G, 2X4,)\>0>@<X3> :

Ansatz

In(zo + u) + Aarctan % =pw), w= (33% + x%)l/g
2

Reduced equation

w?(¢')? + N2 =0.

Solutions of the reduced equation

p(w) =teAln(w) + ¢, &==+1.
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Solutions of the eikonal equation

A
In(zp+u)+ A arctan o z% In(x3+x3)+c1, €= =1.
Z2

. <—(G+OzX2), X4,Oz>0>@<X1>:

Ansatz

x9 —aln(xg+u) = p(w), w=uz3.

Reduced equation

(¢)2+1=0.

Solutions of the reduced equation

p(w) =iew+c1, €==+1

Solutions of the eikonal equation

xe —aln(xg +u) =iexs + ¢, ==+l

A= (G+aXs3), X4, a>0) D (Ls+ X3, 8>0):

Ansatz

x3 — aln(xg + u) + [ arctan o o(w),
T2

o= (o} + a3,

Reduced equation

W (') +w?+ 5% =0.

Solutions of the reduced equation

B

(,O(Cd) = is(w2 + /82)1/2 — ieﬂarctanhm

+Cl7

e = =%1.
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Solutions of the eikonal equation

x3 — aln(xg + u) + S arctan o
x2
B
(xF + 23 + 52)1/2
+ic(2? + 23+ )Y2 + ¢, ==l

= —igfarctanh +

. <—(G+OéX3), Xy, > 0>€B <L3> :
Ansatz

x3 —aln(zg+u) = p(w), w= (95% + 5’3%)1/2'

Reduced equation

(¢)2+1=0.

Solutions of the reduced equation

o(w) =iew+c1, €==l.

Solutions of the eikonal equation

r3 — aln(zg + u) = ie(2? + x%)l/Q +c¢, &==%l1.

It should be noted that subalgebras (1)—(5) do not belong

to the Lie algebra of the extended Galilei group G(1,3) C

P(1,4).

There are no reductions

From the invariants of the remaining three nonconjugate

subalgebras it is impossible to construct the ansatzes, which
reduce the eikonal equation. The details on this theme can be

found in Chapter 2.
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3.3.3 Lie Algebras of the Type A3,

In Chapter 2, we have presented 16 ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type Az .

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to algebraic equations

Taking into account the invariants of seven nonconjugate
subalgebras, we constructed the ansatzes, which reduced the
eikonal equation to algebraic equations.

1. (4Xy, PI — X3 —7X3, o+ X1 — pXo — 0X3,
v>0,0#0,u>0):
Ansatz
r3(x0 +u)? — (ya1 + 220 — pw3)(zo +u) +
+(0 —yp)ry — 2y + 3 = (W), W =T+ U.
Reduced equation
wh 4 2pw3 + (72 + p? + 62+ 2)w? + 2u(y? + 1w +
+(yp =96+ +1=0.
Solution of the eikonal equation
(w0 +u)* + 2p(xo + u)® + (V* + p? + 6% + 2) (w0 + u)® +
+2u(y? + 1)(zo +u) + (yp — 8 +~4*+1=0.
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2. (4Xy, P — Xo —X3, Po+ X1 — pXo, 7 >0, >0):

Ansatz
z3(wo +u)? = (yo1 — pas)(vo + u) — ypury — w2y + 73 =

= p(w), w=u1z0+ u.

Reduced equation
wh+2pw3 + (VP p2+2)w?+2u (A + Dw+y2 (P 4+1)+1 =
=0.

Solution of the eikonal equation

(o +u)* + 2p(wo + u)® + (v* + p? + 2) (zo +u)® +
+2u(v% 4+ 1) (wo +u) + 2 (p? +1) + 1 = 0.

3. (4Xy, P — Xy, Po+ X1 — puXo—0X3,0 >0,u#0):

Ansatz
w3(wo +u)® — (220 — paz)(xo +u) + 621 + 23 = p(W),

w = T + Uu.

Reduced equation

wh 4 2pw3 + (8% + p? + 2)w? 4+ 2uw + 62 +1 = 0.

Solution of the eikonal equation
(o +u)* + 2p(wo + u)® + (6% + p® + 2) (w0 + u)? +
+2u(wo +u) + 62 +1=0.
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4. <4X4, P— Xy, Po+ X1 —0X3,0 > 0> :

Ansatz

r3(20+u)? —220(20+u)+o11 +3 = (W), W= T0+U.

Reduced equation

(w? + 1) (w?+ 8%+ 1) =0.

Solutions of the eikonal equation

(ro+u)?+1=0, (vo+u)?+2+1=0.
5. <4X4, P — Xy — BX3, P2—|—X1,ﬁ>0>:

Ansatz

r3(xo+u)?—Bri(vo+u)—Pratas = p(w), w=zotu.

Reduced equation

(w? + 1) (w? + B2+ 1) = 0.

Solutions of the eikonal equation

(xo+u)?+1=0, (zo+u)?+p2+1=0.

As we see, the left hand sides of the Ansatzes (1)—(5)
are polinomials in invariant w = zg + u. The reduced
equations are also polinomials in variable w, but with
the constant coefficients. The solutions of the eikonal
equation are also polinomials in variable xg+ u with
the constant coefficients.
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6. (4X4, P1—Xo, Po+ X1 — puXo,n #0) :
Ansatz

r3(x0 +u)? + pws(ro +u) + 13 = p(w), w=z0+ U

Reduced equation

(W? + pw +1)2 = 0.

Solution of the eikonal equation
1

U = —5 ([L+ (MZ —4)1/2> — XQ.

7. 2uXy4, Py — Xo, X1+ puX3,p>0):

Ansatz

L3 — pI1
Tg —— = (W), W=+ u.
2 To+ U () 0

Reduced equation

w?(w? + p? +1) = 0.

Solutions of the reduced equation
w=0, w+p*+1=0.
Solutions of the eikonal equation
u=—xg, (xo+u)?+p>+1=0.

It should be noted that subalgebras (1)-(7) belong to the
Lie algebra of the extended Galilei group G(1,3) C P(1,4).

Reductions to equations, which can be splitted on two
linear ODEs

Taking into account the invariants of five nonconjugate
subalgebras, we constructed the ansatzes, which reduced the
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eikonal equation to those, which could be splitted on two lin-
ear ODEs.

L <2:LLX47 P3, X1+ pXs, p > O) :

Ansatz

o+ u=pw), w=zs.
Reduced equation
(¢")? = 0.
Solution of the reduced equation
o(w) = c1.
Solution of the eikonal equation
U =:c — xg-

2. <2X4, P3 —Lg, X3> :

Ansatz

zo+u=pw), w=(23+x3)2

Reduced equation
(") =0.
Solution of the reduced equation

o(w) =c.

Solution of the eikonal equation

U =c — Ig-
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3. (2X4, Ps— X1, X3):

Ansatz

o+ u=pw), w=um.

Reduced equation
(") =0.
Solution of the reduced equation

p(w) = c1.

Solution of the eikonal equation

u = Ccyp — xg.

4. <—204X4, Ls+ aXs, P3,a> 0> :
Ansatz
zo+u=pw), w=(z]+23)"2

Reduced equation
(") =0.

Solution of the reduced equation

p(w) = c1.

Solution of the eikonal equation

U= c| — xQ-

5. <4X4, P — Xy P +X1> :

Ansatz

zo+u=¢pw), w=uzs.
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Reduced equation

(¥")? =0.

Solution of the reduced equation
o(w) = c.

Solution of the eikonal equation
U =Cc — ao-

Let us note that, in the cases (1)—(5), we obtained the
same reduced equation. The solutions of the eikonal equation

are also the same.
It should be noted that subalgebras (1)-(5) belong to the
Lie algebra of the extended Galilei group G(1,3) C P(1,4).

Reductions to nonlinear ODEs

From the invariants of four nonconjugate subalgebras, we
constructed the ansatzes, which reduced the eikonal equation
to nonlinear ODEs.

1. (2/LX4, P3;—2Xo, X1+ pXs, u> 0> :

Ansatz

(mo + u)? + 423 — 4pz1 = (W), w = x9.

Reduced equation
()2 +16(u* +1) = 0.

Solutions of the reduced equation

o(w) = 4ie(p® + 1)V2w + ¢, € = +1.

Solutions of the eikonal equation

1/2
u:2(i»sxg\/p2+1+ux1—w3—|—cl> —xg, € = =£1.
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2. <2X4, P; — Ly —2aXy, X3,a > 0> :
Ansatz
2q arctan L — zo—u=pw), w=(z?+x3)V2
T2
Reduced equation
w?(¢')? + 4% = 0.
Solutions of the reduced equation
p(w) = 2iealn(w) + ¢1, € = £1.

Solutions of the eikonal equation

x
u = 20arctan = + icor In(z? +23) — 20 + 1, € = £1.
T2

3. (—26Xy, L3+ BX3, P3—2Xo,3>0):
Ansatz
1
5arCtanﬂ+Z($o+u)2+$3 = p(w), w= (zI+a3)V/2
Z2
Reduced equation
w?(P)2 +w?+ B2 =0.
Solutions of the reduced equation

p(w) =iey/w? + B2 — iaﬁarctanh% + cq,

w2+ 2
e = =+1.

Solutions of the eikonal equation

1
ﬁarctan% + Z(afo +u)2 = isx/a:% + ac% + 82 —
2
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B
Vi + 23 + 32

4. <2X4, P3, X3>:

—ieBarctanh —x3+c, € = =+1.

Ansatz

r2 = p(w1,w2), w1 =xo+u, we =x7.

Reduced equation

Y3 +1=0.

Solution of the reduced equation

p(wi,wa) = iwy + f(w1).

Solution of the eikonal equation
z2 = ix1 + f(xo + u),

where f is an arbitrary smooth function.

It should be noted that subalgebras (1)-(4) belong to the
Lie algebra of the extended Galilei group G(1,3) C P(1,4).

There are no reductions

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation. The details on this theme can be
found in Chapter 2.

3.3.4 Lie Algebras of the Type A;,

In Chapter 2, we have presented two ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type Agz.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
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of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.
Below, we present the results obtained.

Reductions to nonlinear ODEs

From the invariants of two nonconjugate subalgebras, we
constructed the ansatzes, which reduced the eikonal equation
to nonlinear ODEs.

1. (28Xy, Ps, G+ aX;+ BX3,a>0,0>0):
Ansatz
x1 —aln(zg+u) = p(w), w=xs.
Reduced equation
(¢)+1=0.
Solutions of the reduced equation

o(w) =iew +c1, € = £1.

Solutions of the eikonal equation

x1 —aln(zg +u) = iexe + ¢1, € = £1.
1 Q
2. <20[X4, APj3, XL?, +G+ XXg,a >0,\ > 0> :

Ansatz

In(zg + u) + Aarctan o ow), w=(2?+ x%)l/Q'
2

Reduced equation
w?(¢')? + N2 =0.
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Solutions of the reduced equation
p(w) =ieXln(w) + ¢1, € = £1.

Solutions of the eikonal equation

A
In(zp +u) + A arctan o i€§ In(x? +23) +c1, e = £1.
T2

It should be noted that subalgebras (1) and (2) do not be-
long to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

There are no reductions

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation. The details on this theme can be
found in Chapter 2.

3.3.5 Lie Algebras of the Type A;3

In Chapter 2, we have presented four ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type Ajz 3.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to equations, which can be splitted on
two linear ODEs

Taking into account the invariants of one nonconjugate
subalgebra, we constructed the ansatz, which reduced the
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eikonal equation to that, which could be splitted on two linear
ODEs.

(P1, P2, G):

Ansatz

(2% — 2% — 23 — )2 = p(w), w=us.

Reduced equation
(¢ = D¢ +1)p?* =0.

Solutions of the reduced equation
plw)=ew+c e==x1, ¢=0.

Solutions of the eikonal equation
(22 — 23 — 23 —u®)V2 =caz +¢1, € = +1,
22— 22—zl —u?=0.
It should be noted that subalgebra do not belong to the
Lie algebra of the extended Galilei group G(1,3) C P(1,4).

Reductions to nonlinear ODEs

From the invariants of three subalgebras, we constructed
the ansatzes, which reduced the eikonal equation to nonlinear

ODEs.

1. <P1, P, G+ aXs,a> O> :

Ansatz

r3 - aln(zg +u) = p(w), w =13 o} —af—ul

Reduced equation
4w (') + dayp’ — 1 =0.
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Solutions of the reduced equation

(a? + w)1/?
Ye}

o(w) = e(a? + w)Y/? — ieaarctan
—%lnw—l—c, e ==+l1.

Solutions of the eikonal equation

x3 — aln(xg+u) = 5($g _ x% _ x% — w24 a2)1/2 _

(x% —x% —x% —u? +a2)1/2

—tevarctan —
Xe
o 2 2 2 2
—5111(330_1'1 —x5—u’)+e¢, ==l

1
. <P3, X4, XL3+G,)\>0>:

Ansatz

In(zp + u) + A arctan o ow), w=(2?+z3)V/2
T2

Reduced equation

w2 + N2 =0.

Solutions of the reduced equation

p(w) =ielln(w) + ¢, € = £1.

Solutions of the eikonal equation

A
In(zo + u) + A arctan o i5§ In(z? +23) +¢, e = 1.
Z2
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3. <P3, X4, G+ aXy,a> 0> :

Ansatz

x1 —aln(zg+u) = p(w), w=x,.

Reduced equation

(¢)2+1=0.

Solutions of the reduced equation

o(w) =iew+ec, e==l1.

Solutions of the eikonal equation

x1 —aln(xg +u) =iexs + ¢, €=+l

It should be noted that subalgebras (1)-(3) do not belong
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

There are no reduction

From the invariants of the remaining one nonconjugate
subalgebra it is impossible to construct the ansatz, which re-
duces the eikonal equation. The details on this theme can be
found in Chapter 2.

3.3.6 Lie Algebras of the Type A3,

From the invariants of all four nonconjugate subalgebras
it is impossible to construct the ansatzes, which reduce the
eikonal equation. More details on this theme can be found in
Chapter 2.

It should be noted that those subalgebras do not belong
to the Lie algebra of the extended Galilei group 5(1,3) C
P(1,4).
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3.3.7 Lie Algebras of the Type Aj;

The Lie algebra of the group P(1,4) contains no noncon-
jugate subalgebras of the type Af ;.

3.3.8 Lie Algebras of the Type A3,

In Chapter 2, we have presented 16 ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type Aszg.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to linear ODEs

The invariants of four subalgebras allow us to construct the
ansatzes, which reduce the eikonal equation to linear ODEs.

1. (P — X1, Po— X9, —P3+ L3) :

Ansatz

72 + 23 73

2u = = .

Reduced equation
wiw+ DAY —1) =0.
Solutions of the reduced equation

w+1=0, w=0, ¢w)=w+c.
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Solutions of the eikonal equation
z} + 3 3

+ 2u =
zo+u+1 x0+u

u=—1-—x9, u=—xo,
=x9+u-+ .
. <P1, —Ps, —(L3+O,/X3),Oé>0>:

Ansatz

2 .2 .2 2 _ —
xg—x] — 25 —u” =pw), w=zo+u.

Reduced equation

we' —p=0

Solution of the reduced equation
o(w) = cw.

Solution of the eikonal equation
23— 23 — 23 —u? = c(x + u).

. (X1, — X9, P3s— L3):

Ansatz

2

2 _ .2
TH—T5— U

=pw), w=uwz+u.
Reduced equation

we' —p =0.
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Solution of the reduced equation
o(w) = quw.

Solution of the eikonal equation

2

2 _ .2
TH—T5—U

= Cl(l'o —|—u).

AP, Py, —P3+ Ls):

Ansatz

2 2 2 2 2 _ —
xp—x] — 25 —r5 —ut =pw), w=z0+u.

Reduced equation

we' —p=0.

Solution of the reduced equation
o(w) = qw.

Solution of the eikonal equation

2 2 2

2 2

= c1(xo + u).

It should be noted that subalgebras (1)-(4) belong to the

Lie algebra of the extended Galilei group G(1,3) C P(1,4).

Reductions to equations, which can be splitted on two

linear ODEs

Taking into account the invariants of seven nonconjugate

subalgebras, we constructed the ansatzes, which reduced the
eikonal equation to those, which could be splitted on two lin-

ear ODEs.
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1. <X1, —Xg, — (Lg —|—2X4)> :
Ansatz
xo+u=¢pw), w=uzs.
Reduced equation
(¥")? =0.
Solution of the reduced equation
o(w) = c.
Solution of the eikonal equation
U = Ccy — xg.

2. <P1, P, Lj +2X4> :
Ansatz
xo+u=¢pw), w=urs.
Reduced equation
(¢¥")? =0.
Solution of the reduced equation
o(w) = c1.

Solution of the eikonal equation

U =Ccyp — xg.

1
3. <X1, Xo, L3—|—§(P3—|—Cg)>

Ansatz

(23 + uH)Y2 = p(w), w= 0.
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Reduced equation

(¢ —1)(¢' + 1)p* = 0.

Solutions of the reduced equation

olw)=cew+c, e==%1, ¢=0.
Solutions of the eikonal equation

(22 4+u)?2 =exgtc, e==+1, zi4+u®=0.

A
. <—X1, Xo, —L3—§(P3—|-C3),O<)\< 1>:

Ansatz

(2 +u))? = p(w), w=ua0

Reduced equation

(¢ —1)(¢' + 1)p* = 0.

Solutions of the reduced equation

plw)=ecw+c1, e==+1, ¢@=0.

Solutions of the eikonal equation

(22 4+u)V? =exg+cp, e==+1, 234+u®=0.

. (=X1, Xo, — (L3 +AG), A > 0) :

Ansatz

(23 —u2)1? = p(w), w=us.

Reduced equation

(¢ =1)(¢"+1)=0.
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Solutions of the reduced equation

p(w) =ew+c1, € = £1.

Solutions of the eikonal equation
(22 —u?)/? = caz 41, e = +1.

. <X1, —Xo, — (Lg + OéXg) , o > 0> :

Ansatz

u=pWw), w=ux.

Reduced equation

(@ =1)(¢" +1) =0,

Solutions of the reduced equation

plw) =ew+c1, € = £1.

Solutions of the eikonal equation

u=c¢exg+c, € ==+1.

. <X1, —Xo, P3— L3 —2aXy,a > 0> :

Ansatz
(w0 + u)3 + 6wz (1o + u) + 602 (z0 — u) = p(w),

w = (zo +u)? + 4a30.

Reduced equation

4(p")? — 9w = 0.

Solutions of the reduced equation

o(w) = ew®? + ¢, e = 1.
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Solutions of the eikonal equation

(w0 + u)® + 6axs(zo + u) + 602 (xg — u) =

/

=5 ((xo +u)? + 4a903)3 S c1, € = £1.

Reductions to nonlinear ODEs

From the invariants of three nonconjugate subalgebras, we
constructed the ansatzes, which reduced the eikonal equation
to nonlinear ODEs.

1
1. <X1, —Xo,—L3 — B (P3+C3) —a(Xo+ Xy),a > 0> :

Ansatz

« arctan E — o = Sp(w)’ w = (:1:% + u2)1/2
u

Reduced equation

Wt (W (¢)? — w? +a?) = 0.

Solutions of the reduced equation

w=0, pw)=cvw?—a?- ieaarctanh% +
w? —a

+c, ¢ = =%1.
Solutions of the eikonal equation

z3
i +u? =0, aarctan— —zp=c\/z3+u?—a?—
u

10’
—ieaarctanh +c, € ==1.

\/acg + u? — a?
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A
2. <X1, Xo, L3+ E(Pg + Cg) + Oé(Xo + X4), a >0,
0<A<1):

Ansatz

a arctan % — Ao = p(w), w=(x3+u?)/2
Reduced equation

wt (w?(¢')? — Nw? + a?) = 0.

Solutions of the reduced equation

w=0, pw)=ecvIiw?—-a?-—
—ieaarctanhL +c, e ==1.
w2 — a2

Solutions of the eikonal equation

T
aarctan =2 — Azg = e1/A2(22 + u?) — a2 —
u
—ieaarctanh @ +c, € ==+1,
VA2 (2d + u?) — o2

3 +u? = 0.

3. <X1, Xo, L3+)\G+04X3,0é>0,)\>0>2

Ansatz

Ars —aln(zg +u) = p(w), w= (95(2) - U2)1/2-

Reduced equation
w(w(@)? + 200" — N2w) = 0.
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Solutions of the reduced equation

o
w=0, p(w) = eVI2w? + a? —ecoarctanh ———— —
) VA2w? 4+ a?

—aln(w) + ¢, e = £1.

Solutions of the eikonal equation

x%—u2 — 07 /\xg—ozln(x0+u) — 5\/>\2($% _ u2) + o’ —

« «
—eaarctanh — —1In(x2 —u?) + ¢,
ST tar 2 )

e = =+1.

It should be noted that subalgebras (1)—(3) do not belong
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

Reductions to PDEs

From the invariants of two nonconjugate subalgebras, we
constructed the ansatzes, which reduced the eikonal equation
to PDEs.

1. <X1, X2, L3>2

Ansatz

u=p(w,w), wi ==y, wy=T3.

Reduced equation

p1 =3 —1=0.

Solutions of the reduced equation

(w1, w) = /3 + 1wy + cows + ¢1 + co,e = £1.
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Solutions of the eikonal equation
u = &t\/cg 4+ 1zg+ coxg +c1 + co, e = £1.
2. (P1, Py, L3):

Ansatz

_ _ _ .2 2 2 2
z3 = p(wi,w2), w1 =x0+u, wr=ax[—T]—T5—Uu.

The reduced equation

4w2g0% + 4dwip1pp2 — 1 = 0.

Solutions of the reduced equation

o(wr,ws) = c1 Inwy — e(wy + )2 4

/ 2
w?—m—ﬂlnwg—kcz, e = %1.

+iecy arctan
1C1 2

Solutions of the eikonal equation

23 = cyIn(zo +u) —e(x? — 23 — 23 —u? + )2 +

2 2 2 2 2
. TH—x7 — x5 —u‘+c
+1ecy arctan\/ 0 1 - 2 L_
1C1

—%1 In(xd — 22 — 23 — u?) + 2,6 = £1.

As we see, in the above two cases, the reduced equations
are PDEs. The reason is that the subalgebras corresponding
to them have rank 2. Therefore, they have three invariants.
As a rule, the ansatzes, which can be constructed with the
help of those invariants, reduce the eikonal equation to PDEs.

It should be noted that subalgebras (1) and (2) belong

to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).
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There are no reductions

From the invariants of the remaining two nonconjugate
subalgebras it is impossible to construct the ansatzes, which
reduce the eikonal equation. The details on this theme can be
found in Chapter 2.

3.3.9 Lie Algebras of the Type Aj,

In Chapter 2, we have presented two ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type A3 ;.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to equations, which can be splitted on two
linear ODEs

Taking into account the invariants of one nonconjugate
subalgebra, we constructed the ansatz, which reduced the

eikonal equation to that, which could be splitted on two linear
ODEs.

(P1, Py, L3+ \G,\>0):

Ansatz

(23 — 23 — 23 - u?)'? = p(w), w=xs.
Reduced equation

(¢ = D"+ 1p* =0.

Solutions of the reduced equation

pw)=ew+c, e=+1, p=0.

156



Solutions of the eikonal equation
(-2 -2 —u?)'/? = cx3tey, e = +1, ad—a?—a3—u? = 0.

It should be noted that the subalgebra do not belongs
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

Reductions to nonlinear ODEs

From the invariants of one nonconjugate subalgebra, we
constructed the ansatz, which reduced the eikonal equation
to nonlinear ODE.

<P1, Py, L3+ MG+ aX3,a >0, )\>0>2

Ansatz

A3 —aln(zg +u) = p(w), w=a2%—23—23—u’
The reduced equation

4w (') + da’ — A2 = 0.

Solutions of the reduced equation

VAX2w+a?2
- — —lnw+

— ()2 2\1/2 _ - ¢
o(w) =e(Nw+ a) ie arctan — )

+c, e=41.
Solutions of the eikonal equation
Az — aln(zg 4+ u) = g()\Q(xg _ x% _ :1;3 _ u2) + a2)1/2 _

_ A2(z2 — 22 — 22 — u?) + a2
—1eq arctan \/ ( 0 1 - 2 ) —
Q0

—%ln(x% — 23— 23 —u?) + ¢, e ==1.
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It should be noted that the subalgebra do not belongs
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

3.3.10 Lie Algebras of the Type Ass

In Chapter 2, we have presented only one ansatz, which
is invariant with respect to three-dimensional nonconjugate
subalgebra of the type Asg.

By now, we performed the symmetry reduction of the
eikonal equation to differential equation with a fewer number
of independent variables using this ansatz. Some invariant
solutions are constructed.

Below, we present the results obtained.

Reductions to PDEs

From the invariants of one nonconjugate subalgebra, we
constructed the ansatz, which reduced the eikonal equation

to PDE.
(Ps3, G, —C3) :
Ansatz
(25 — 23 — w2 = p(wr,ws), w1 =11, wy = T2,
Reduced equation
P (Pt + 5 —1) =0.

Solutions of the reduced equation

o(wr,we) =0, @(wr,ws) =e/1—cawi + caws + ¢y,
e = =+1.
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Solutions of the eikonal equation

2 2 2 2 2 2\1/2 2\1/2
a2 —ai—u? =0, (22— 22 —u?)V?=c(1 — 3)V2%2) + comy +

+c1, € = £1.

As we see, the reduced equation is PDEs. As above, the
reason is that the corresponding subalgebra has rank 2.

It should be noted that the subalgebra do not belongs
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).

3.3.11 Lie Algebras of the Type A3

In Chapter 2, we have presented two ansatzes, which are
invariant with respect to three-dimensional nonconjugate sub-
algebras of the type Agzg.

By now, we performed the symmetry reduction of the
eikonal equation to differential equations with a fewer number
of independent variables using those ansatzes. Some classes
of invariant solutions are constructed.

Below, we present the results obtained.

Reductions to equations, which can be splitted on two
linear ODEs

Taking into account the invariants of one nonconjugate
subalgebra, we constructed the ansatz, which reduced the

eikonal equation to that, which could be splitted on two linear
ODEs.

<—% <L3 + % (Ps +C’3)) ; % (Lz + % (P +C2)> ;

%(L1+%(P1+Cl))>:
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Ansatz
(2F + 23 + 23 +u)? = p(w), w= .
Reduced equation
(¢ = D¢ +1)p* = 0.
Solutions of the reduced equation
plw)=cecw+c1, e==+1, @=0.
Solutions of the eikonal equation
(w3 ad+aitu)/? = cxgter, e = +1, 22 +ad+ad+u? = 0.

It should be noted that the subalgebra do not belongs
to the Lie algebra of the extended Galilei group G(1,3) C
P(1,4).
Reductions to PDEs

From the invariants of one nonconjugate subalgebra, we
constructed the ansatz, which reduced the eikonal equation
to PDE.

(—L3, —La, —L1) :
Ansatz

u=pwi,w), w1 =m0, wp=(af+a3+a3)" /2
Reduced equation

¢ —p3—1=0.

Solutions of the reduced equation

(w1, we) = v/ + 1wy + cows + ¢1, € = +1.
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Solutions of the eikonal equation
u=e(c3+ 1)z + co(x? + 22+ 23V 4 c1, e = £1.

As we see, the reduced equation is PDEs. As above, the
reason is that the corresponding subalgebra has rank 2.

It should be noted that the subalgebra belongs to the Lie
algebra of the extended Galilei group G(1,3) C P(1,4).
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