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PREFACE

This book presents original studies on the leading edge of linear algebra. Each chap-
ter has been carefully selected in an attempt to present substantial research results across a
broad spectrum. The main goal of Chapter One is to define and investigate the restricted
generalized inverses corresponding to minimization of constrained quadratic form. As
stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descrip-
tor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A
review of the most interesting properties of the Projective Equivalence and the Extended
Hermite Equivalence classes is presented in the chapter. New determinantal representa-
tions of generalized inverse matrices based on their limit representations are introduced in
Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer’s rules for the
least squares solution with the minimum norm and for the Drazin inverse solution of sin-
gular linear systems have been obtained in the chapter. In Chapter Four, a very interesting
application of linear algebra of commutative rings to systems theory, is explored. Chap-
ter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic
matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of
triangular matrices (tables) is introduced. The main characters” of the chapter are special
triangular tables (which will be called triangular matrices) and their functions paradetermi-
nants and parapermanents. The aim of Chapter Seven is to present the latest developments
in iterative methods for solving linear matrix equations. The problems of existence of com-
mon eigenvectors and simultaneous triangularization of a pair of matrices over a principal
ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two
approaches to define a noncommutative determinant (a determinant of a matrix with non-
commutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example
of how the methods of linear algebra are used in natural sciences, particularly in chemistry.
In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix,
all columns add to zero, all the diagonal elements are non-positive and all the other ma-
trix entries are non-negative. As a result of this particular structure, the Gershgorin Circles
Theorem can be applied to show that all the eigenvalues are negative or zero.

Minimization of a quadratic form (z,T'z) + (p, z) + a under constraints defined by
a linear system is a common optimization problem. In Chapter 1, it is assumed that the
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viii Ivan Kyrchei

operator 7' is symmetric positive definite or positive semidefinite. Several extensions to
different sets of linear matrix constraints are investigated. Solutions of this problem may
be given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several
new classes of generalized inverses are defined minimizing the seminorm defined by the
quadratic forms, depending on the matrix equation that is used as a constraint.

A number of possibilities for further investigation are considered.

In systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-
Algebraic) systems are intimately related to the matrix pencil theory. Actually, a large
number of systems are reduced to the study of differential (difference) systems S (F, G) of
the form:

S(F,G) : Fi(t) = Gx(t) (or the dual Fz = Gi(t)),

and
S(F,G): Friy, = Gy (or the dual Fxy, = Grgyq), F,G € C™"

and their properties can be characterized by the homogeneous pencil sF'— $G. An essential
problem in matrix pencil theory is the study of invariants of sF'—5G under the bilinear strict
equivalence. This problem is equivalent to the study of complete Projective Equivalence
(PE), &p, defined on the set C, of complex homogeneous binary polynomials of fixed
homogeneous degree r. For a f (s,§) € C,., the study of invariants of the PE class Ep is
reduced to a study of invariants of matrices of the set C**? (for k > 3 with all 2 x 2-minors
non-zero) under the Extended Hermite Equivalence (EHE), £.;. In Chapter 2, the authors
present a review of the most interesting properties of the PE and the EHE classes. Moreover,
the appropriate projective transformation d € RGL (1, C/R) is provided analytically ([1]).

By a generalized inverse of a given matrix, the authors mean a matrix that exists for a
larger class of matrices than the nonsingular matrices, that has some of the properties of the
usual inverse, and that agrees with inverse when given matrix happens to be nonsingular. In
theory, there are many different generalized inverses that exist. The authors shall consider
the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin inverses.

New determinantal representations of these generalized inverse based on their limit rep-
resentations are introduced in Chapter 3. Application of this new method allows us to obtain
analogues classical adjoint matrix. Using the obtained analogues of the adjoint matrix, the
authors get Cramer’s rules for the least squares solution with the minimum norm and for the
Drazin inverse solution of singular linear systems. Cramer’s rules for the minimum norm
least squares solutions and the Drazin inverse solutions of the matrix equations AX = D,
XB = D and AXB = D are also obtained, where A, B can be singular matrices of
appropriate size. Finally, the authors derive determinantal representations of solutions of
the differential matrix equations, X’ + AX = B and X’ + XA = B, where the matrix A
is singular.

Many physical systems in science and engineering can be described at time ¢ in terms
of an n-dimensional state vector z(t) and an m-dimensional input vector u(t), governed by
an evolution equation of the form z/(t) = A - z(t) + B - u(t), if the time is continuous, or
xz(t+1) = A-z(t) + B - u(t) in the discrete case. Thus, the system is completely described
by the pair of matrices (A, B) of sizes n x n and n x m respectively.

In two instances feedback is used to modify the structure of a given system (A, B): first,
A can be replaced by A + BF’, with some characteristic polynomial that ensures stability
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of the new system (A + BF, B); and second, combining changes of bases with a feedback
action A — A + BF one obtains an equivalent system with a simpler structure.

Given a system (A, B), let (A, B) denote the set of states reachable at finite time when
starting with initial condition z(0) = 0 and varying u(¢), i.e., (A, B) is the right image of
the matrix [B|AB|A?B| - - -]. Also, let Pols(A, B) denote the set of characteristic polyno-
mials of all possible matrices A + BF', as F varies.

Classically, (A, B) have their entries in the field of real or complex numbers, but the
concept of discrete-time system is generalized to matrix pairs with coefficients in an arbi-
trary commutative ring R. Therefore, techniques from Linear Algebra over commutative
rings are needed.

In Chapter 4, the following problems are studied and solved when R is a commutative
von Neumann regular ring:

e A canonical form is obtained for the feedback equivalence of systems (combination
of basis changes with a feedback action).

e Given a system (A, B), it is proved that there exist a matrix F' and a vector u such
that the single-input system (A + BF, Bu) has the same reachable states and the
same assignable polynomials as the original system, i.e. (A + BF, Bu) = (A, B)
and Pols(A + BF, Bu) = Pols(A, B).

Chapter 5 gives a comprehensive investigation to behaviors of a general Hermitian
quadratic matrix-valued function

#(X)=(AXB+C)M(AXB+C)" +D

by using ranks and inertias of matrices. The author first establishes a group of analytical
formulas for calculating the global maximal and minimal ranks and inertias of ¢(X ). Based
on the formulas, the author derives necessary and sufficient conditions for ¢(X) to be a
positive definite, positive semi-definite, negative definite, negative semi-definite function,
respectively, and then solves two optimization problems of finding two matrices X or X
such that ¢(X) = ¢(X) and ¢(X) < #(X) hold for all X, respectively. As extensions,
the author considers definiteness and optimization problems in the Lowner sense of the
following two types of multiple Hermitian quadratic matrix-valued function

k k *
A X1, ..., Xp) = (ZA,-X,-B,-+C>M<ZA,-X,-B,-+C> + D,

=1 =1

k
(X1, .., Xi) = Z (AiX;B; + C; ) M;( AiX;B; + C; )" + D.
=1

Some open problems on algebraic properties of these matrix-valued functions are men-
tioned at the end of Chapter 5.

In Chapter 6, the author considers elements of linear algebra based on triangular tables
with entries in some number field and their functions, analogical to the classical notions of
a matrix, determinant and permanent. Some properties are investigated and applications in
various areas of mathematics are given.
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The aim of Chapter 7 is to present the latest developments in iterative methods for solv-
ing linear matrix equations. The iterative methods are obtained by extending the methods
presented to solve the linear system Az = b. Numerical examples are investigated to con-
firm the efficiency of the methods.

The problems of existence of common eigenvectors and simultaneous triangularization
of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are
investigated in Chapter 8. The necessary and sufficient conditions of simultaneous trian-
gularization of a pair of matrices with quadratic minimal polynomials are obtained. As a
result, the approach offered provides the necessary and sufficient conditions of simultane-
ous triangularization of pairs of idempotent matrices and pairs of involutory matrices over
a principal ideal domain.

Since product of quaternions is noncommutative, there is a problem how to determine
a determinant of a matrix with noncommutative elements (it’s called a noncommutative de-
terminant). The authors consider two approaches to define a noncommutative determinant.
Primarily, there are row — column determinants that are an extension of the classical def-
inition of the determinant; however, the authors assume predetermined order of elements
in each of the terms of the determinant. In Chapter 9, the authors extend the concept of
an immanant (permanent, determinant) to a split quaternion algebra using methods of the
theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on these
properties, analogs of the classical adjont matrix over a quaternion skew field have been
obtained. As a result, the authors have a solution of a system of linear equations over a
quaternion division algebra according to Cramer’s rule by using row—column determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix inversion.
By using quasideterminants, solving of a system of linear equations over a quaternion divi-
sion algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quasidetermi-
nants is that the authors have not one determinant of a quadratic matrix of order n with
noncommutative entries, but certain set (there are n? quasideterminants, n row determi-
nants, and n column determinants). The authors have obtained a relation of row-column
determinants with quasideterminants of a matrix over a quaternion division algebra.

First order chemical reaction mechanisms are modeled through Ordinary Differential
Equations (O.D.E.) systems of the form: , being the chemical species concentrations vector,
its time derivative, and the associated system matrix.

A typical example of these reactions, which involves two species, is the Mutarotation
of Glucose, which has a corresponding matrix with a null eigenvalue whereas the other one
is negative.

A very simple example with three chemical compoundsis grape juice, when it is con-
verted into wine and then transformed into vinegar. A more complicated example,also
involving three species, is the adsorption of Carbon Dioxide over Platinum surfaces. Al-
though, in these examples the chemical mechanisms are very different, in both cases the
O.D.E. system matrix has two negative eigenvalues and the other one is zero. Consequently,
in all these cases that involve two or three chemical species, solutions show a weak stability
(i.e., they are stable but not asymptotically). This fact implies that small errors due to mea-
surements in the initial concentrations will remain bounded, but they do not tend to vanish
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as the reaction proceeds.

In order to know if these results can be extended or not to other chemical mechanisms,
a possible general result is studied through an inverse modeling approach, like in previous
papers. For this purpose, theoretical mechanisms involving two or more species are pro-
posed and a general type of matrices - so-called First Order Chemical Kinetics Mechanisms
(F.O.C.K.M.) matrices - is studied from the eigenvalues and eigenvectors view point.

Chapter 10 shows that in an FO.C.K.M. matrix all columns add to zero, all the diagonal
elements are non-positive and all the other matrix entries are non-negative. Because of this
particular structure, the Gershgorin Circles Theorem can be applied to show that all the
eigenvalues are negative or zero. Moreover, it can be proved that in the case of the null
eigenvalues - under certain conditions - algebraic and geometric multiplicities give the same
number.

As an application of these results, several conclusions about the stability of the O.D.E.
solutions are obtained for these chemical reactions, and its consequences on the propagation
of concentrations and/or surface concentration measurement errors, are analyzed.

Complimentary Contributor Copy



In: Advances in Linear Algebra Research ISBN: 978-1-63463-565-3
Editor: Ivan Kyrchei, pp. 79-132 © 2015 Nova Science Publishers, Inc.

Chapter 3

CRAMER’S RULE
FOR GENERALIZED INVERSE SOLUTIONS

Ivan 1. Kyrchei*
Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics, Lviv, Ukraine

Abstract

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger
class of matrices than the nonsingular matrices, that has some of the properties of the
usual inverse, and that agrees with inverse when given matrix happens to be nonsin-
gular. In theory, there are many different generalized inverses that exist. We shall
consider the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin
inverses.

New determinantal representations of these generalized inverse based on their limit
representations are introduced in this chapter. Application of this new method allows
us to obtain analogues classical adjoint matrix. Using the obtained analogues of the
adjoint matrix, we get Cramer’s rules for the least squares solution with the minimum
norm and for the Drazin inverse solution of singular linear systems. Cramer’s rules
for the minimum norm least squares solutions and the Drazin inverse solutions of the
matrix equations AX = D, XB = D and AXB = D are also obtained, where
A, B can be singular matrices of appropriate size. Finally, we derive determinantal
representations of solutions of the differential matrix equations, X’ + AX = B and
X’ 4+ XA = B, where the matrix A is singular.

Keywords: generalized inverse; Drazin inverse; weighted Drazin inverse; Moore-Penrose
inverse; weighted Moore-Penrose inverse; system of linear equations; Cramer’s Rule; ma-
trix equation; generalized inverse solution; least squares solution; Drazin inverse solution;
differential matrix equation

AMS Subject Classification: 15A09; 15A24

*E-mail address: kyrchei@online.ua
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1. Preface

It’s well-known in linear algebra, an n-by-n square matrix A is called invertible (also
nonsingular or nondegenerate) if there exists an n-by-n square matrix X such that

AX =XA =1,.

If this is the case, then the matrix X is uniquely determined by A and is called the inverse
of A, denoted by A~1,

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger
class of matrices than the nonsingular matrices, that has some of the properties of the usual
inverse, and that agrees with inverse when given matrix happens to be nonsingular.

For any matrix A € C™*" consider the following equations in X:

AXA = A; (1.1)
XAX = X; (1.2)
(AX)* = AX; (1.3)
(XA)* = XA. (1.4)
and if m = n, also
AX = AX; (1.5)
AFFIX = AP, (1.6)

For a sequence G of {1, 2, 3,4, 5} the set of matrices obeying the equations represented in
G is denoted by A{G}. A matrix from A{G} is called an G-inverse of A and denoted by
A9

Consider some principal cases.

If X satisfies all the equations (1.1)-(1.4) is said to be the Moore-Penrose inverse of
A and denote AT = A(1:23:4) The MoorePenrose inverse was independently described
by E. H. Moore [1] in 1920, Arne Bjerhammar [2] in 1951 and Roger Penrose [3] in 1955.
R. Penrose introduced the characteristic equations (1.1)-(1.4).

If det A # 0, then AT = A~L,

The group inverse A9 is the unique A (1:2:5)
Ind A = min{k : rank A1 = rank A*} = 1.

A matrix X = AP is said to be the Drazin inverse of A if (1.6) (for some positive
integer k), (1.2) and (1.5) are satisfied, where £k = Ind A. It is named after Michael
P. Drazin [4]. In particular, when IndA = 1, then the matrix X is the group inverse,
X = A9 If IndA = 0, then A is nonsingular, and AP =A"1

Let Hermitian positive definite matrices M and N of order m and n, respectively, be
given. For any matrix A € C"*", the weighted Moore-Penrose inverse of A is the unique
solution X = AM  of the matrix equations (1.1) and (1.2) and the following equations in
X [5]:

inverse of A, and exists if and only if

(3M) (MAX)* = MAX; (4N) (NXA)* = NXA.

In particular, when M = I,,, and N = I,,, the matrix X satisfying the equations (1.1), (1.2),
(3M), (4N) is the Moore-Penrose inverse A ™.
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Cramer’s Rule for Generalized Inverse Solutions 81

The weighted Drazin inverse is being considered as well.

To determine the inverse and to give its analytic solution, we calculate a matrix of co-
factors, known as an adjugate matrix or a classical adjoint matrix. The classical adjoint of
A, denote Adj[A],is the transpose of the cofactor matrix, then A~ = AdﬁA] . Representa-
tion an inverse matrix by its classical adjoint matrix also plays a key role for Cramer’s rule
of systems of linear equations or matrices equations.

Obviously, the important question is the following: what are the analogues for the ad-
joint matrix of generalized inverses and, consequently, for Cramer’s rule of generalized
inverse solutions of matrix equations?

This is the main goal of the chapter.

In this chapter we shall adopt the following notation. Let C"*" be the set of m by n
matrices with complex entries, C!™"*" be a subset of C"™*" in which any matrix has rank r,
I,,, be the identity matrix of order m, and ||.|| be the Frobenius norm of a matrix.

Denote by a ; and a;. the jth column and the ith row of A € C™*", respectively. Then
a’; and a; denote the jth column and the ith row of a conjugate and transpose matrix A*as
well. Let A ; (b) denote the matrix obtained from A by replacing its jth column with the
vector b, and by A; (b) denote the matrix obtained from A by replacing its ith row with
b.

Leta :={aq,...,ap} C{1,...,m}and B :={01,..., Bk} € {1,...,n} be subsets
of the order 1 < k < min {m,n}. Then ’Ag’ denotes the minor of A determined by the

rows indexed by « and the columns indexed by (3. Clearly, |[A%| denotes a principal minor
determined by the rows and columns indexed by a.. The cofactor of a;; in A € C"*" is
denoted by % |A].

Oa;
Forl <k <n,Lg, ={a:a=(ay,...,a;), 1 <aq <...<a; <n} denotes
the collection of strictly increasing sequences of k integers chosen from {1,...,n}. Let

Ng:= Lgym X Ly, Forfixeda € L, 1y, B € Ly, 1 <p < K, let

I m (@) :={I: I € L, sy, I 2 a},

Jin (B) :=1{J : J € Lgn, J 2 B},
Nk (a,ﬁ) = Ik,m (a) X Jk,n (ﬁ)

For case i € awand j € 3, we denote

Iim{i} ={a:a€Lym,ical, Jyn{jt:={08: B € Lin.j< B}
Nild, 3} = T, m{i} X Ji, {5 }-

The chapter is organized as follows. In Section 2 determinantal representations by ana-
logues of the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose,
Drazin and weighted Drazin inverses are obtained.

In Section 3 we show that the obtained analogues of the adjoint matrix for the general-
ized inverse matrices enable us to obtain natural analogues of Cramer’s rule for generalized
inverse solutions of systems of linear equations and demonstrate it in two examples.

In Section 4, we obtain analogs of the Cramer rule for generalized inverse solutions of
the matrix equations, AX = B, XA = B and AXB = D, namely for the minimum norm
least squares solutions and the Drazin inverse solutions. We show numerical examples to
illustrate the main results as well.
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82 Ivan I. Kyrchei

In Section 5, we use the determinantal representations of the Drazin inverse solution to
solutions of the following differential matrix equations, X'+ AX = B and X'+ XA = B,
where A is singular. It is demonstrated in the example.

Facts set forth in Sections 2 and 3 were partly published in [6], in Section 4 were
published in [7, 8] and in Sections 5 were published in [8].

Note that we obtained some of the submitted results for matrices over the quaternion
skew field within the framework of the theory of the column and row determinants [9, 10,
11, 12, 13, 14].

2. Analogues of the Classical Adjoint Matrix for Generalized
Inverse Matrices

For determinantal representations of the generalized inverse matrices as analogues of
the classical adjoint matrix, we apply the method, which consists on the limit representation
of the generalized inverse matrices, lemmas on rank of some matrices and on characteristic
polynomial. We used this method at first in [6] and then in [8]. Liu et al. in [15] deduce
the new determinantal representations of the outer inverse Ag )s based on these principles
as well. In this chapter we obtain detailed determinantal representations by analogues of
the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose, Drazin and

weighted Drazin inverses.
2.1. Analogues of the Classical Adjoint Matrix for the Moore - Penrose
Inverse

Determinantal representation of the Moore - Penrose inverse was studied in [1],[16, 17,
18, 19]. The main result consists in the following theorem.

Theorem 2.1. The Moore - Penrose inverse A+ = (a;.;) € C™™ of A € CI™™ has the
following determinantal representation

o)

Z1:\/ - (A*)g daj; 5
ay=PERL o i<ij<n
> [ans]la]]

(v,0)ENy

This determinantal representation of the Moore - Penrose inverse is based on corre-
sponding full-rank representation [16]: if A = PQ, where P € C"*" and Q € C.*",
then

A+ — Q*(P*AQ*)—IP*

For a better understanding of the structure of the Moore - Penrose inverse we consider

it by singular value decomposition of A. Let
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Cramer’s Rule for Generalized Inverse Solutions 83

and the singular value decomposition (SVD) of A is A = UXV*, where

U = [u ug...u,] € C™™ UU =1,
V = [viva..v,] € C™" V*V =1,,

Y = diag(oy, 09, ..., o) € C™X".

Then [3], AT = VEFU* where =+ = diag(o !, 05, ..., 0771).
We need the following limit representation of the Moore-Penrose inverse.

Lemma 2.2. [20] If A € C™*", then

AT = limA* (AA"+AD) 7" = lim (A"A + A1) A",

where A € R, and R is the set of positive real numbers.
Corollary 2.3. [21] If A € C™*", then the following statements are true.
i) Ifrank A = n, then AT = (A*A) "t A*.
ii) Ifrank A = m, then At = A* (AA*)™.
iii) Ifrank A =n =m, then At = A1,

We need the following well-known theorem about the characteristic polynomial and
lemmas on rank of some matrices.

Theorem 2.4. [22] Let d, be the sum of principal minors of order v of A € C™"*", Then
its characteristic polynomial pa (t) can be expressed as pa (t) = det (tI — A) = " —
dltn_l + dgtn_2 — ...+ (—1)” dp,.

Lemma 2.5. If A € C"*", then rank (A*A) , (af‘}) <r.
Proof. Let P, (—a;x) € C™*", (k # i), be the matrix with —a;, in the (i, k) entry, 1

in all diagonal entries, and O in others. It is the matrix of an elementary transformation. It
follows that

k%; aj gt .. a’{j o k%; aj . Okn
j j
(A*A) ; (a%) - [ Pi (—ajx) = . e
ki Yoakak ... Qi e > Ak, arn
K7 K7
i—th

The obtained above matrix has the following factorization.

Z' alpdkl ... Ay ... Z aj,Qkn
k#j k#j
Z' Upp @kl - pi - Z ar, Qgn
k#j k#j

i—th
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84 Ivan I. Kyrchei

a ... 0 e.oa
ai, aj, ... ai, 1 nl
_| % 9 e G 0 ...1 ...0 j — th.
ary Gro ... Qo ;I'n;l 0 ' s
i—th
a1 0 Aln
Denote by A = 0 ... 1 .00 j — th. The matrix A is obtained from

aml - - - 0 cee Qmn

i—th
A by replacing all entries of the jth row and of the ith column with zeroes except that the
(7,1) entry equals 1. Elementary transformations of a matrix do not change its rank. It

follows that rank (A*A) , (af‘}) < min {rank A*, rank A} Since rank A > rank A =

rank A* and rank A* A = rank A the proof is completed. m The following lemma can be
proved in the same way.

Lemma 2.6. If A € C]"*", then rank (AA™), (a}‘{) <r.

Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.7. If A € C™*" and \ € R, then

det (AL, + A*A) , (a%)) = A1 4 A2 4 o), @.1)
(i5) * * p

where ¢\ )| and cs”’ = (A*A) , (a*; forall s =
( 7 ’ ﬂeg,:n{v;} ( ' ( ~J>>g

I,n—1,i=1,n,and j =

Proof. Denote A*A =V = (v;;) € C"*". Consider (A, + V) , (v ;) € C"*". Taking
into account Theorem 2.4 we obtain

(AL, 4+ V), (v.i)| = &N 4 do A" 2+ 4 dy, (2.2)

, 1.

where dg = |(V)g| is the sum of all principal minors of order s that contain the
BEJs, n{i}
i-th column forall s = I,n—1 and d,, = det V. Since v; = > a*,a;;, where a” is the
]

Ith column-vector of A* for all [ = 1, n, then we have on the one hand
AL+ V) (vaa)| = Z |((AL+ V) (a%ai)] =

z|<u+v> ()| - au 2-3)

Having changed the order of summation, we obtain on the other hand forall s =1,n — 1

b= ¥ |WVi= ¥ s|vi@mg=
BeJs, n{i} BeJs, n{i} 1 (2.4)
YOy | va@)))a

I BeJs,n{i}
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By substituting (2.3) and (2.4) in (2.2), and equating factors at a;; when [ = j, we obtain
the equality (2.1). m

By analogy can be proved the following lemma.

Lemma 2.8. If A € C™*" and \ € R, then
det (AL, + AAY); (af)) = riPAm= o pfNm=2 4 i)

where 1) = I(AA"); (af )| and 9 = > |((AA%); (a))a| for all s =
aclsm{j}

I,n—1i=1,nandj=1m.

The following theorem and remarks introduce the determinantal representations of the
Moore-Penrose by analogs of the classical adjoint matrix.
Theorem 2.9. If A € C™*" and r < min{m,n}, then the Moore-Penrose inverse A =
(a;;) € C™*™ possess the following determinantal representations:

(a0, (=)

>

T BEJIr, n{i}

a;; , 2.5
> aa) ]
ﬂeJr,n
or * * «
T AN @)
+ ae r,mJ
af = . 2.6)
! ; I(AA*) g
ae T, m

foralli=1,n, 5 =1,m.

Proof. At first we shall obtain the representation (2.5). If A € R, then the matrix
(AI+ A*A) € C™" is Hermitian and rank (\I + A*A) = n. Hence, there exists its
inverse

Liy Loy ... Ly
- 1 Lio Las ... Lpo

AL+ AA) ™ = ,
AL+AA) = oaraay | ... ...
L1, Loy ... Lpn

where L;; (Vi,j = 1,n) is a cofactor in AXI + A*A. By Lemma 2.2, A"t =
/l\in%] (AL+ A*A)~' A*, so that

det(\I+A*A) | (a*)) det(\I+A*A) | (a*,,)
det(\IT+A*A) e det(M\[+A*A)
AT = lim : .7
A0 det(MI+A*A) | (a%,) det(\I+A*A) | (a*,)
det(\I+A*A) e det(M\[+A*A)

From Theorem 2.4 we get

det NI+ A*A) = A"+ A"+ doX" 2 4.+ d,,
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where d, (Vr = 1,n—1) is a sum of principal minors of A*A of order r and d,, =
det A*A. Since rank A*A =rank A =r, thend, =d,_1 =...=d,;+1 = 0and

det NI+ A*A) = N+ d A\ L doA" 24 4+ d "7 (2.8)
In the same way, we have for arbitrary 1 < ¢ <mand1 < j < m from Lemma 2.7

det (AL + A*A) , (a%) = (A1 g \n=2 ),
, and lgfj) =

where for an arbitrary 1 < k <n —1, ll(jj) = ¥
BEJk, nii}

det (A*A) , (af‘}). By Lemma 2.5, rank (A*A) , (af“j> < r so that if & > r, then

(AA) )

-J

= X
ﬂeJk,n{i}
(Vi =1,n,V) =1, m). Finally we obtain

B
’((A*A) ,,-(a*')%’ =0, (V3 € Jn{i}, Vi =1,n,¥j = T,m). Therefore if r + 1 < k <

n, then l,(fj) ¥

(A*A) 5(a%))"| = 0 and 19 = det (A*A) , (a%,) = 0,
< >g J

det AL+ A*A) , (a%;) = (VN g §IN=2 @ (2.9)

By replacing the denominators and the numerators of the fractions in entries of matrix
(2.7) with the expressions (2.8) and (2.9) respectively, we get

(1 an—1g (1D yn—r 1 A=ty gt yn—r
NFDNT AT N T e AT
A+:>1\im =
TO a1 g e 1P an—1y () yn—r
N DN AT N T e AT
lg‘ll) ls‘lm)
T -
= ... I

From here it follows (2.5).
We can prove (2.6) in the same way. ®

Corollary 2.10. If A € C"*™ and r < min{m,n} or r = m < n, then the projection
matrix P = AT A can be represented as

Pij
P (i),
d. (A*A) ), o0,
where d_; denotes the jth column of (A*A) and, for arbitrary 1 < i,j < n, pjj =

> |(ara) ad g
BeJrn{i}
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Proof. Representing the Moore - Penrose inverse AT by (2.5), we obtain

iy hie oo b all a2 ... aip

p_ 1 lor lao ... lom a1 G2 ... G2,
0, (AA)

b1 lne o0 lom Am1 Am2 .. Gmn

Therefore, for arbitrary 1 < ¢, 7 < n we get

pij =2 > ((A*A).i(af“k))g’ Capj =
k Bedr n{i} ,
— * . a* - QL ﬂ — * i * )
- Z Elaae )] I ((aa) (dJ))ﬂ’

m Using the representation (2.6) of the Moore - Penrose inverse the following corollary can
be proved in the same way.

Corollary 2.11. If A € C"*", where r < min{m,n} orr = n < m, then a projection
matrix Q = AA™ can be represented as

Y 7
= (k).
where g; denotes the ith row of (AA*) and, for arbitrary 1

> [((AA%); (gi))a].

a€lrm{j}

IN

i,j < m, qij =

Remark 2.12. Ifrank A = n, then from Corollary 2.3 we get At = (A*A)™' A*. Rep-
resenting (A*A)~! by the classical adjoint matrix, we have

1 det(A*A);(a%) ... det(A*A);(a*,,)
e(AA) \ det(A*A) . (a%) ... det(A*A),(a%,)
If n < m, then (2.5) is valid.
Remark 2.13. As above, if rank A = m, then
1 det(AA*); (aj ) ... det(AA*), (a])
CHAAT) | Get(AA ), (a8 ) ... det(AA™), (a%)

Ifn > m, then (2.6) is valid as well.

Remark 2.14. By definition of the classical adjoint Adj(A) for an arbitrary invertible
matrix A € C™*"™ one may put, Adj(A)- A = det A -1,

If A € C"™*" and rank A = n, then by Corollary 2.3, ATA = 1,,. Representing the
matrix AT by (2.10) as AT = m, we obtain LA = det (A*A) - L,. This means
that the matrix L = (1;;) € C"*™ is a left analogue of Adj(A), where A € C'*", and
li; = det(A*A) ; (af‘}) foralli =T,m, j = T,m.
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If rank A = m, then by Corollary 2.3, AAT = 1,,. Representing the matrix A
by (2.11) as At = WRA*), we obtain AR = 1, - det (AA™*). This means that the
matrix R = (r;;) € C"™*" is a right analogue of Adj(A), where A € C;"*", and r;; =
det(AA*); (af ) foralli=1,n,j=1m.

If A € C™*" and r < min{m, n}, then by (2.5) we have A+ = m, where L =
lij) € C"™™ and l;; = A*A) . (a*)) 2| foralli = T,n, j = I,m. From
J J Bedati) 1 .J B
€Jdr,n1t

Corollary 2.10 we get LA = d,. (A*A) - P. The matrix P is idempotent. All eigenvalues of
an idempotent matrix chose from 1 or 0 only. Thus, there exists an unitary matrix U such
that

LA =d,(A*A)Udiag (1,...,1,0,...,0)U",

where diag (1,...,1,0,...,0) € C"*" is a diagonal matrix. Therefore, the matrix L can
be considered as a left analogue of Adj(A ), where A € C"*".
In the same way, if A € C™ "™ and r < min{m,n}, then by (2.5) we have A+ =
Taxs) Where R = (rij) € CV™, 1y = IZ{»}‘((AA*)J: (aj)) alforalli = 1,n,
aclrm)
j =1, m. From Corollary 2.11 we get AR = d,. (AA*) - Q. The matrix Q is idempotent.
There exists an unitary matrix V such that

AR =d, (AA*)Vdiag(1,...,1,0,...,0)V*,

where diag (1,...,1,0,...,0) € C™*™. Therefore, the matrix R can be considered as a
right analogue of Adj(A) in this case.

Remark 2.15. To obtain an entry of A by Theorem 2.1 one calculates (C"C" +
CZL:%C;__ll) determinants of order r. Whereas by the equation (2.5) we calculate as much
as (C7 + C"~1) determinants of order r or we calculate the total of (C", + C"\,) deter-
minants by (2.6). Therefore the calculation of entries of AT by Theorem 2.9 is easier than

by Theorem 2.1.

2.2. Analogues of the Classical Adjoint Matrix for the Weighted
Moore-Penrose Inverse

Let Hermitian positive definite matrices M and N of order m and n, respectively, be
given. The weighted Moore-Penrose inverse X = AM n can be explicitly expressed from
the weighted singular value decomposition due to Van Loan [23].

Lemma 2.16. Let A € C"*". There exist U € C™*™, V € C™*" satisfying U*"MU =
L, and VN7V = 1,, such that

D o «
asu(D0)v

Then the weighted Moore-Penrose inverse AL N can be represented

D! o

-1
Ay n=N V( 0o o

Jum,
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where D = diag(o1, 09, ...,0.), 01 > 09 > ... > 0, > 0and 07;2 is the nonzero eigenvalues
of N"'A*MA.

For the weighted Moore-Penrose inverse X = AKI ~» We have the following limit
representation.

Lemma 2.17. ([24], Corollary 3.4.) Let A € C™*™, At = N-1A*M. Then
Ajjy = lm(AT+ AZA)TIA%.
By analogy to Lemma 2.17 can be proved the following lemma.
Lemma 2.18. Let A € C™*", A* = N~YA*M. Then

Af v = lim A(AL+AAR)

Denote by a'.ij and ag. the jth column and the ith row of Af respectively. By putting A
instead A*, we obtain the proofs of the following two lemmas and theorem similar to the
proofs of Lemmas 2.5, 2.6, 2.7, 2.8 and Theorem 2.9, respectively.

Lemma 2.19. If A € C"*" and A* is defined as above, then
rank (AﬁA> ‘(at.ij> < rank (AﬁA>,

rank (AAﬁ>j. (af ) < rank (AA%),

foralli=1,nandj =1,m
Analogues of the characteristic polynomial are considered in the following lemma.

Lemma 2.20. If A € C™*" and \ € R, then
det <<)\In + AliA> ‘ (a%)) _ Cgij))\n—l i Cg:j))\n—z b i),

det (()\I —I—AAﬁ) ( )) _ rgw Al (ij))\m—2 +. ”_i_r%j)’

where c(]) = ’AﬁA ( ’ (” =  |(AA¥); (a})| and c(]) =
EM(COF () i = o ]((AM) @)’

t=1m-1,i=1nandj=1m

The following theorem introduce the determinantal representations of the weighted
Moore-Penrose by analogs of the classical adjoint matrix.
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Theorem 2.21. If A € C"*" and r < min{m,n}, then the weighted Moore-Penrose

inverse AKL N= (&;;) € C™ ™ possess the following determinantal representation:

((a%8) (=) 3

>

i = petr nii) , (2.12)
> |ara) ]
BEIr, n
or
> |((aah; @) s
it = Sl (2.13)
” NV VOF
ae T, m

foralli =1,n, 5 =1,m.

2.3. Analogues of the Classical Adjoint Matrix for the Drazin Inverse

The Drazin inverse can be represented explicitly by the Jordan canonical form as fol-
lows.

Theorem 2.22. [25] If A € C™*" with Ind A = k and

_L(C 0\,
A-p(C D)

where C is nonsingular and rank C = rank A*, and N is nilpotent of order k, then

-1
AP =P <CO g) Pl (2.14)

Stanimirovic’ [26] introduced a determinantal representation of the Drazin inverse by
the following theorem.

Theorem 2.23. The Drazin inverse AP = (ag ) of an arbitrary matrix A € C™™ with
IndA = k possesses the following determinantal representation

o)

(v, 8) %: G} (As)g daji AG

«a, eNp 50

ol = e - ,1<ij<m (2.15)
(A% |a]]

(v, 6)ENry,
where s > k and r, = rankAS®.

This determinantal representations of the Drazin inverse is based on a full-rank repre-
sentation.
We use the following limit representation of the Drazin inverse.
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Lemma 2.24. [27] If A € C™™*", then
-1
AP = lim ()\In n Ak“) AR,
where k = IndA, A € Ry, and R, is a set of the real positive numbers.
Since the equation (1.6) can be replaced by follows
XAk+1 — Ak
the following lemma can be obtained by analogy to Lemma 2.24.

Lemma 2.25. [f A € C"*", then
-1
AP = limA* ()\In n Ak“) :
where k = IndA, A € Ry, and R, is a set of the real positive numbers.

Denote by a.(f ) and az(..k) the jth column and the ith row of A* respectively.

We consider the following auxiliary lemma.

Lemma 2.26. If A € C™"™" with IndA = k, then foralli,j =1,n

rank Affl (a&@) < rank AFRFL

Proof. The matrix Affl (a&@) may by represent as follows

n n
(k) (k)
Yoarsay ... Y Q1ssy
s=1 s=1
(k) (k)
aj ... A
n n
(k) (k)
Yo GnsQy] .. Y ApsQsy
s=1 s=1

Let Py; (—a;;) € C™*", (I # i), be a matrix with —a; ; in the (I, ) entry, 1 in all diagonal
entries, and 0 in others. It is a matrix of an elementary transformation. It follows that

Z alsag];) R Z alsagﬁ)
s#j 57
A @) TTPuay=| &% o Q% |
I#i ) '
i ansa(];) s i ansag?
s#j s
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The obtained above matrix has the following factorization.

n n
> alsag];) Y arsalt)
s#] s#]
N
n n
> ansag];) e ansagﬁ)
s#] s#]

a ... 0 ... a k k k
e
0 1 0 Qg1 Qg 2n

ant ... 0 ... ann ‘121) G£L2) e agwg

Denote the first matrix by
ai]p ... 0 ... Q1p
A=]l0 ...1 ..0 ith.
anp1 ... 0 ce. Qpn
jth

The matrix A is obtained from A by replacing all entries of the ith row and the jth column
with zeroes except for 1 in the (7, j) entry. Elementary transformations of a matrix do

not change its rank. It follows that rank A" (a&@) < min {rank Ak, rankA}. Since

rank A > rank A* the proof is completed. m
The following lemma is proved similarly.

Lemma 2.27. If A € C™"™" with IndA =k, then foralli,j =1,n
rank Ai“ (a.(f)> < rank ARt

Lemma 2.28. If A € C"" and A € R, then

det (()\In + AR (a§@)> = =1y Q0D \m—2 Ly ) (2.16)
where ') = ’A?fl(ag.k))’ and v = > ’(A?fl(ag.k))y[’ foralls = 1,n—1
a€ls n{j} @
andi,j=1,n.

Proof. Consider the matrix (()\In + ARy, (a&@)) € C™ ™. Taking into account Theo-
rem 2.4 we obtain

’(()\In + Ak (agf“))> ’ — N £ oA L dy, 2.17)
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where ds = 3. |(AFT1)9] is the sum of all principal minors of order s that contain
a€ls, n{j}

the j-th row forall s = 1,n — 1 and d,, = det A**1. Since ayfﬂ) => ajlal(.k), where
]

(k)

a

is the Ith row-vector of A* for all [ = T, n, then we have on the one hand
k k
(01, + AR, @) | = > AL+ AR, (a50)] =

2. a5t ’ (AL+ AR, (az(k)> ’

(2.18)

Having changed the order of summation, we obtain on the other hand forall s =1,n — 1

h= ¥ @)= v |(ak (aa))”
a€lon{j} a€lsn{j} 1 . “
Zl: aji -y, ’(A?H (al(.k)>>

a€ls,n{j} @

(2.19)

By substituting (2.18) and (2.19) in (2.17), and equating factors at a;; when [ = 4, we obtain
the equality (2.16). m

Theorem 2.29. If Ind A = k and rank A**t! = rank A¥ = < nfor A € C"*", then the

D ) € C™ " possess the following determinantal representations:

= (s (&),

ol — acl.n{s} a
1) Z ’(AkH)Z’

a€lrp
B
D _ ﬂe%{i} <A%"+1 <a'(f)>>g’

A k+1)8
> Ak
ﬂGJr,n

Drazin inverse AP = (a

o[ (2.20)

and

(2.21)

foralli,j =1,n.

Proof. At first we shall prove the equation (2.20).
If A\ € Ry, then rank (A + AF*1) = n. Hence, there exists the inverse matrix

Ri1 Ro1 ... Ry

()\I+Ak+1>_1 _ 1 Riz Ras ... Rpo
O+ AR | . o |

Rln R2n Rnn

where R;; is a cofactor in A\I + A**! for all i,j = T,n. By Theorem 2.25, AP =
lim A (AL, + Ak“)_l, so that
A—0

n k n k
D 1 Zs:l ags)Rls e Zs:l ags)Rns
A~ = lim ... ... ... =
r—o0det (A\I + Ak+1
‘ ( ) Z?:l ag? Ry ... Z?Zl ag? Ry
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det(AL+AR1) (al?)) det(AL+ARTL) (al)
det(,\I+Ak+1) T det(AI+Ak+1)
lim (2.22)
A20 L et (AT LAk 1) (a® det(AT+AR+1) (2
1. n.
det( AL+ AF+1) T det( AI+AF+1)

Taking into account Theorem 2.4 , we have
det ()\I n Ak“) SN d AT Ao A2 L dy,
where ds = ) ’ (Ak“)Z’ is a sum of the principal minors of A**1 of order s, for all
OLGIS sn

s =1,n—1, and d, = det A¥*!. Since rank A**! = r thend, = dp,_1 = ... =
dr+1 = 0 and

det ()\I + Ak“) SN AT AN d AT (2.23)

By Lemma 2.28 forall 7,5 = 1, n,
det()\I—l—AkH) ( ) 190\t g 2 (i),

where forall s =1,n — 1,

- % | ),

a€lsnij}

9

and 157 = det A?H (af;.k)>.
By Lemma 2.26, rank A?fl ( (k)> < r, so that if s > r, then for all &« € I, ,,{i} and
foralli,j = 1,n,
(0 ()] -

Therefore if r + 1 < s < n, then for all ¢, j =

1,n,
= ()] -
a€ls n{j}

and 1§79 = det ANt (a&@) = 0. Finally we obtain
det (AL+ A1) (@) =it fOxn2 e 2.04)
2

By replacing the denominators and the nominators of the fractions in the entries of the
matrix (2.22) with the expressions (2.23) and (2.24) respectively, finally we obtain

(IWan-1g 1D yn—r I an—1p g™ yn—r
D A Fd A= d AT A d A L AT
A~ = lim e e e =
X
TO a1 ) e 1P an=1y () yn—r
A Fd A= d AT A d A L AT
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(an) (in)
5 5
. e .

= .« .. R .« .. 9
d, e d,

where for all ¢z, j = 1, n,

N I CD IR LN

aelr,n{j} ae[rn

The equation (2.21) can be proved similarly.

This completes the proof. m Using Theorem 2.29 we evidently can obtain determinantal
representations of the group inverse and the following determinantal representation of the
identities AP A and AA” on R(A¥)

Corollary 2.30. If IndA = 1 and rank A% = rank A = r < n for A € C™ ™, then the

group inverse A9 = (a%) € C™ " possess the following determinantal representations:

= J(ase),

. aGIr,n{j}

g
A NV 22
aGIr,n
(A% (a.j))g
o0 = Bt}
iy 8
> |a2]
ﬂGJr,n

foralli,j =1,n.

Corollary 2.31. If IndA = k and rank A*T! = rank A* = r < n for A € C™™, then
the matrix AAP = (gij) € C™™™ possess the following determinantal representation

(a5 (a0 ]

) ’(Akﬂ)g’

aGIr,n

>

aGIr,n{j}

qij = , (2.26)

foralli,j =1,n.

Corollary 2.32. If IndA = k and rank A*T! = rank A* = r < nfor A € C™™, then
the matrix AP A = (pij) € C™"*™ possess the following determinantal representation

B
Ak;rl a..(k—i-l) ’
Z (A5 (04
Pij = Y , 2.27)
AR
ﬂeZJ;«,n ( " >ﬂ’

foralli,j =1,n
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2.4. Analogues of the Classical Adjoint Matrix for the W-Weighted
Drazin Inverse

Cline and Greville [28] extended the Drazin inverse of square matrix to rectangular ma-
trix and called it as the weighted Drazin inverse (WDI). The W-weighted Drazin inverse
of A € C™*"™ with respect to W € C"*" is defined to be the unique solution X € C"*"
of the following three matrix equations:

1) (AW)F1XW = (AW)F,
2) XWAWX = X, (2.28)
3) AWX = XWA,

where £ = max{Ind(AW), Ind(WA)}. It is denoted by X = A4y . In particular, when
A cC™™and W =1, , then A 4 reduce to AP If A € C™ ™ is non-singular square
matrix and W = I,,,, then Ind(A) = 0 and Ay = AP = A~L.

The properties of WDI can be found in (e.g.,[29, 30, 31, 32]). We note the general
algebraic structures of the W-weighted Drazin inverse [29]. Let for A € C™*"™ and W €
C™>*m exist L € C™*™ and Q € C™*" such that

o A.ll 0 —1 o Wll 0 —1
asr( A2 Yo weo( W0 Y

B (W11A11Wq1)"t 0 _1

where L, L, A1, Wy are non-singular matrices, and A2, Wy are nilpotent matrices.
By [27] we have the following limit representations of the W-weighted Drazin inverse,

Then

-1

Aqw = lim (Mm + (AW)’“”) (AW)FA (2.29)
and _1

Aqw = limA(WA)* ()\In + (WA)’“”) (2.30)

where A € R, and R, is a set of the real positive numbers.
Denote WA =: U and AW =: V. Denote by V(Jk ) and vz(.k) the jth column and the ith
row of V¥ respectively. Denote by V¥ := (AW)*A € C™*" and W = WAW ¢ C"*™,

Lemma 2.33. If AW =V = (v;;) € C"™*™ with IndV = k, then
rank (Vk+2>.i (\_/(Jk)> < rank (Vk+2> . (2.31)

Proof. We have V¥2 = VFW. Let P; (—w;5) € C™*™, (s # i), be a matrix with
—wj ¢ in the (4, s) entry, 1 in all diagonal entries, and O in others. The matrix P; ; (—w; ),
(s # 1), is a matrix of an elementary transformation. It follows that

ORGSR S il i
s#£j s#£j
(Vk+2> z(;,(;ﬁ) ] Pis (—w;4) =
s#£j s#£j
i—th
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‘We have the next factorization of the obtained matrix.

_(k) - _(k _(k) -
> vgs)wsl .. U§J) e vgs)wsm
s#] s#]
Z vmswsl . _gf]) . Z ﬁyfswsm
s#J s#J
i—th
'D%g 'D%g o 'D%g wip ... O s Wim
— [ P2 Ta e Vo 0 ...1 ...0 j— th.
(k) —(k _(k
L B W
i—th
wip ... O c.. Wim
Denote W := 0 ... 1 .00 j — th. The matrix W is obtained from
Wp1 .- 0 .. Wy
i—th

W = WAW by replacing all entries of the jth row and the ith column with zeroes except
for 1 in the (i, j) entry. Since elementary transformations of a matrix do not change a rank,

then rank V2 (\_/(Jk )> < min {rank VF, rankW}. It is obvious that

rank V¥ = rank (AW)*A > rank (AW)*+2,
rank W > rank WAW > rank (AW)*+2,

From this the inequality (2.31) follows immediately. m
The next lemma is proved similarly.

Lemma 2.34. If WA = U = (u;;) € C"" with IndU = k, then
rank (Uk+2> ' (ﬁgk)> < rank (Uk+2> ,
7.
where UF := A(WA)F ¢ Cx"
Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.35. If AW =V = (v;;) € C"™*™ with IndV = k and X € R, then

](Mm + V’“”) , (v?ﬁ) ’ = (D=1 g D ym=2 ), (2.32)

(i5) _ k+2 — (k) (i5) _ k42 —(k)\\ 8
where ¢’ = det (V vy ) and cs?’ = det [ (V v forall
( )z( .J > ﬂng{i} <( )z( .J >>ﬂ

s=1m-1i=1m,andj=1,n
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Proof. Consider the matrix (AI + Vk+2).z. (v.(f+2)) € C™*™_ Taking into account Theo-
rem 2.4 we obtain

’()\I n V’f+2> | (VF’;+2)> ’ — A AN 4 d, (2.33)
.2
where ds = 5. | (Vk+2)g| is the sum of all principal minors of order s that con-
BEJTs, m{i}
tain the i-th column for all s = 1,m —1 and d,, = det (V*™2). Since v.(f+2) =
(k)
> Uy Wy
I
A
I

= vaf)wli, where \_/.(f) is the /th column-vector of V¥ = (AW)*A
: !
S @
!
and WAW = W = (wy;) for all | = 1, n, then we have on the one hand
L+ VEe) (V)] = > A1+ V) (5D a,)

= [(a v, (o) o

(2.34)

Having changed the order of summation, we obtain on the other hand forall s =1, m — 1

vl F e ()] -
2.

= 2 e () B

By substituting (2.34) and (2.35) in (2.33), and equating factors at w;; when [ = j, we
obtain the equality (2.32). m By analogy can be proved the following lemma.

ds =
BeJs, m{i}

(2.35)

Lemma 2.36. If WA = U = (u;;) € C"" with IndU = k and X € R, then

where 17 = ’(Uk“)j. (ﬁgk))

and i = B |(0. @) &

forall s =

I,n—1i=1mandj=1n

Theorem 2.37. If A € C"™*", W € C™" with k = max{Ind(AW), Ind(WA)} and
rank(AW)K = r, then the W-weighted Drazin inverse Agw = (afjw> e C™*™ with
respect to W possess the following determinantal representations:

dw _ BeJrm{i} ((AW)’“;W (‘_,(Jk)>> g’

1) k
> |aw)t g
BEJIr, m

: (2.36)
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or

> |(wara®)) o
d,W acln{j}
ag = S (WA)k+2a . (2.37)

CZGIT, n

where V(J ) is the jth column of VF = (AW)kAfor allj =1,...,mand u( ) is the ith row
of UF = A(WA)* foralli=1,...,n

Proof. At first we shall prove (2.36). By (2.29),

—1
Agw = lim (AL + (AW)*#2) " (AW)FA.

Let
Lin Lav ... Lm
-1 1 L L ... L
AL AW k+2> _ 12 22 m2 |
(A -+ (AW) dot OL, + (AWYFy | .o
le L2m me

where L;; is a left ij-th cofactor of a matrix AL, + (AW)*+2, Then we have

(AL, + (AW)F+2) ™ (AW)FA =

m m m
Z leﬁgllf) Z leﬁgg) o Z leﬁgﬁ)
s 1 s=1 s 1
o 7 (k)
. 1 Z Lsg’Usl Lsg’Us2 ce Z s2'Usn
T det(ALn+H(AW)E+2) s=1 s=1
m m m
S Lot S Loo® Z Lo o0
s=1 s=1 s=1
By (2.29), we obtain
’(AIm—',-(AW)‘“‘Q) v ’(AIm—',-(AW)‘“‘Q)‘l (v?ﬁ?)’
[(ALn+(AW)F+2)| T [(ALn+(AW)F2)]
Agw = lim . e (2.38)
A—0 ’(Alm_i_(AW)IH-Q)ﬂ (‘—,(f)ﬂ ’(AIm—i-(AW)k*Q)‘m (V(ff)ﬂ
|( AL +(AW)R+2))| : [(\L+(AW)F+2)]|
By Theorem 2.4 we have

’()\Im n (AW)’““) ’ — A A AN L d,

where dg = > ’()\Im + (AW)*+2) g’ is a sum of principal minors of (AW )**+2 of
ﬂGJs,m

order s forall s = 1,m — 1 and dp,, = |(AW)F+2].
Since

rank(AW) 2 = rank(AW) 1 = rank(AW)* =
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then
dm:dm_lz...:dT+1:0.

It follows that det (AL, + (AW)*2) = X + i ™ 4 dpA™ 2 4 .+ d, A7
By Lemma 2.35

(e aw) () =

fori = 1,mand j = 1,n, wherec(]) =

((aws2 (+97)) | for all s =
€Js, m{i}
T,m—Tandc\?) = ](Aw b2 (v) ]

We shall prove that c( W) — 0, when k > r + 1 fori = 1,mand j = 1,n. By Lemma
2.33 ((AW)/I“:r2 ( (Jk)>> < r, then the matrix ((AW)/I“:r2 (\‘/(Jk)>> has no more r linearly
independent columns.

Consider ((AW)”er2 (‘(k)>> , when 8 € J,{i}. It is a principal submatrix of

((AW)’“IJr 2 <\_/(Jk )>> of order s > r + 1. Deleting both its i-th row and column, we obtain

a principal submatrix of order s — 1 of (AW)*+2

are possible.

. We denote it by M. The following cases

elets = r+ 1 and detM # 0. In this case all columns of M are right-
linearly independent. The addition of all of them on one coordinate to columns of

((AW)”er2 (‘(Jk )>> g keeps their right-linear independence. Hence, they are basis

in a matrix ((AW)’“IJr 2 (‘(k)>> 5> and the i-th column is the right linear combina-

tion of its basis columns. From this, ((AW){’Z.Jr2 (v(]k )) g’ =0, when 3 € J; ,{i}

and s = r + 1.

e If s =r+4+1and detM = 0, than p, (p < r), columns are basis in M and in
((aw )52 (v97)) 6. Then | (AW)5#2 (+17) ) | = 0 as well.

o If s >r+ 1, thendet M = 0 and p, (p < ), columns are basis in the both matrices
M and ((AW)”er2 ( (k)>> g Therefore, ((AW)”“:r2 (\‘/(Jk)>> g’ =0.

g
Thus in all cases we have ’((AW){“;FQ (\78“)) g’ = 0,when 8 € Jyp{i}and r+1 <
s < m. Fromhere if r + 1 < s < m, then

= 3 |(awy (v9)) 7] =o.

BEJTs, m{i}

and ) = det ((AW){’“I-Jr2 (V(Jk)>

(AI+ (AW)k”).i (\7(]?)>’ = ng))\m—l 4 DN for § = 1,m and

)zOforizl,mandj: n.

Hence, j

j = 1, n. By substituting these values in the matrix from (2.38), we obtain

Complimentary Contributor Copy



Cramer’s Rule for Generalized Inverse Solutions 101

cgu),\m—1+...+c$“),\m—’“ cgln) ,\m—1+...+c$1”),\m—’“
A pdi A M1 pd AT AN AT I d AT
Ad7W:>1\im =
—0 cgm”,\m—1+...+c$m”,\m—’“ cgmn))\m_l—i-...—i-cgmn))\m_’“
A pdi A1 d AT e A pdi A1 d AT
(11) (1n)
C’I‘ C’I‘
. .. o
Cg‘ml) Cs‘mn)
4 .. 4
(i5) _ k+1 B\ 8 _ k+1\ 8
where ¢, = ' (A )z a; glandd, = 3 (AT 5|- Thus, we
BEJr. m{i} BETr, m

have obtained the determinantal representation of Ay by (2.36).
By analogy can be proved (2.37). m

3. Cramer’s Rules for Generalized Inverse Solutions of Systems
of Linear Equations

An obvious consequence of a determinantal representation of the inverse matrix by the
classical adjoint matrix is the Cramer rule. As we know, Cramer’s rule gives an explicit
expression for the solution of nonsingular linear equations. In [33], Robinson gave an ele-
gant proof of Cramer’s rule which aroused great interest in finding determinantal formulas
for solutions of some restricted linear equations both consistent and nonconsistent. It has
been widely discussed by Robinson [33], Ben-Israel [34], Verghese [35], Werner [36], Chen
[37], Ji [38] ,Wang [39], Wei [31].

In this section we demonstrate that the obtained analogues of the adjoint matrix for
the generalized inverse matrices enable us to obtain natural analogues of Cramer’s rule for
generalized inverse solutions of systems of linear equations.

3.1. Cramer’s Rule for the Least Squares Solution with the Minimum Norm
Definition 3.1. Suppose in a complex system of linear equations:
A -x=y 3.1

the coefficient matrix A € C]"*" and a column of constants'y = (y1, . . .,ym)T e C™
The least squares solution with the minimum norm of (3.1) is the vector x° € C" satisfying

o = i X - X — = i . —
=) = i {11 1A% -yl = pin 14 x -1}

where C™ is an n-dimension complex vector space.

If the equation (3.1) has no precision solutions, then x" is its optimal approximation.
The following important proposition is well-known.

Theorem 3.2. [21] The vector x = ATy is the least squares solution with the minimum
norm of the system (3.1).
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Theorem 3.3. The following statements are true for the system of linear equations (3.1).

i) If rank A = n, then the components of the least squares solution with the minimum

normx¥ = (;v(l], cey x%)T are obtained by the formula
det(A*A) ; (f) .
0 J
i S A B A =1 2
x; ol A" , (V] ,n) , 3.2)
where f = A*y.

ii) Ifrank A =r < m < n, then

> |((A%A) 5(0);

0 _ BEIrni{s}
J d, (A*A) ’

(Vji=1,n). (33)

Proof. i) If rank A = n, then we can represent A™ by (2.10). By multiplying A™ into y
we get (3.2).

ii) If rank A = k < m < n, then A™ can be represented by (2.5). By multiplying A ™
into y the least squares solution with the minimum norm of the linear system (3.1) is given
by components as in (3.3). m Using (2.7) and (2.11), we can obtain another representation
of the Cramer rule for the least squares solution with the minimum norm of a linear system.

Theorem 3.4. The following statements are true for a system of linear equations written in
the formx - A =y.

i) If rank A = m, then the components of the least squares solution x° = yA™ are
obtained by the formula

o det(AAY), (8)
! det AA*

(Vi=1,m),

where g = yA™.
ii) Ifrank A =r <n < m, then

PINCYCHEH
z) = —"" 0 (AA") , (Vizl,m).

Proof. The proof of this theorem is analogous to that of Theorem 3.3. m

Remark 3.5. The obtained formulas of the Cramer rule for the least squares solution differ
from similar formulas in [34, 36, 37, 38, 39]. They give a closer analogue to usual Cramer’s
rule for consistent nonsingular systems of linear equations.

Complimentary Contributor Copy



Cramer’s Rule for Generalized Inverse Solutions 103

3.2. Cramer’s Rule for the Drazin Inverse Solution

In some situations, however, people pay more attention to the Drazin inverse solution
of singular linear systems [40, 41, 42, 43].

Consider a general system of linear equations (3.1), where A € C"*" and x, y are
vectors in C™. R(A) denotes the range of A and N (A) denotes the null space of A.

The characteristic of the Drazin inverse solution A"y is given in [24] by the following
theorem.

Theorem 3.6. Let A € C™ " with Ind(A) = k. Then APy is both the unique solution in
R(AF) of
AFtlx = Aky, (3.4)

and the unique minimal P-norm least squares solution of (3.1).

Remark 3.7. The P-norm is defined as ||x||p = |P~'x|| for x € C", where P is a
nonsingular matrix that transforms A into its Jordan canonical form (2.14).

In other words, the the Drazin inverse solution x = APy is the unique solution of the
problem: for a given A and a given vector y € R(A¥), find a vector x € R(A¥) satisfying
Ax =y withInd A =k.

In general, unlike A*y, the Drazin inverse solution A"y is not a true solution of a
singular system (3.1), even if the system is consistent. However, Theorem 3.6 means that
APy is the unique minimal P-norm least squares solution of (3.1).

A determinantal representation of the P-norm least squares solution of a system of
linear equations (3.1) by the determinantal representation (2.15) of the Drazin inverse has
been obtained in [44].

We give Cramer’s rule for the P-norm least squares solution (the Drazin inverse solu-
tion) of (3.1) in the following theorem.

Theorem 3.8. Let A € C™" with Ind(A) = k and rank A*¥T! = rank A* = r. Then

the unique minimal P-norm least squares solutionX = (21, ..., T,)T of the system (3.1) is
given by
B
s (o))
o~ JT< n i .
. = Bednnlid . Vi=Tm, 3.5)
k+1
> |k
BEIrn

where £ = AFy.

Proof. Representing the Drazin inverse by (2.21) and by virtue of Theorem 3.6, we have

n
~ d
71 . ) szzjl 1sYs
X=|...] =AYy =———
x A Y= 4 (AF+T)
" Z dnsys
s=1
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Therefore,

T = Ak—i—l Z Z

s 1 Be Jr n{l}

Ak+1 Z Z

ﬂeJr n{l} s=1

iy >

Bedr n{i} s=1

(a5 (a) ] =
(A8 (o) ] 0=
(A1 (o2 0.)) )

From this (3.5) follows immediately. m If we shall present a system of linear equations as,

XA =y, (3.6)

where A € C"*" with Ind(A) = k and rank A**! = rank A¥ = r, then by using
the Drazin inverse determinantal representation (2.20) we have the following analog of
Cramer’s rule for the Drazin inverse solution of (3.6):

> (A @)

5, = a&hnld) Y Vi=Tm
>o[Aaks] Y
aGIr,n

where g = yAF.

3.3. Cramer’s Rule for the W-Weighted Drazin Inverse Solution

Consider restricted linear equations
WAWx =y, 3.7

where A € C™*", W € C"™, k; = Ind(AW), ks = Ind(WA) withy € R((WA)*?)
and rank(WA)*2 = rank(AW)* = 7,

In [31], Wei has showed that there exists an unique solution A 4y of the linear equa-
tions (3.7) and given a Cramer rule for the W-weighted Drazin inverse solution of (3.7) by
the following theorem.

Theorem 3.9. Let A, W be the same as in (3.7). Suppose that U € (Cnx(n ") and V* €
(Cﬁfim ") be matrices whose columns form bases for N((WA)*2) and N ((AW)*1), re-
spectively. Then the unique W-weighted Drazin inverse solution x = (x1, ..., Ty, of (3.7)

satisfies
o WAW (i —y) U WAW U
x’_det< V(i — 0) 0>/det< \Y% 0>

where i = 1, m.
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Let k = max{ky, ks}. Denote f = (AW)*A - y. Then by Theorem 2.37 using the
determinantal representation (2.36) of the W-weighted Drazin inverse A4y, we evidently
obtain the following Cramer’s rule of the W-weighted Drazin inverse solution of (3.7),

(W) (1)) 5|

o BEJIr, m{i}

=
BETr, m

(3.8)

9

where i = 1, m.

Remark 3.10. Note that for (3.8) unlike Theorem 3.9, we do not need auxiliary matrices
UandV.

3.4. Examples

1. Let us consider the system of linear equations.

2x1 — bxg +4xy =1,
Tx1 — 4xo — 923 + 1.524 = 2,
3x1 — 4xo + Txz — 6.524 = 3,
x1 — 49 + 1223 — 10.524 = 1.

(3.9

2 0 =5 4
7T -4 -9 1.5
3 =4 7 =65
1 —4 12 -10.5

The coefficient matrix of the system is A = . The rank of A is

equal to 3. We have

2 7 3 1 63 —44 —40 —11.5

. o -4 4 x| —44 48 —40 62
A=l 9 7 12 PAAT] 0 a0 200 205
4 15 —65 —105 115 62 —205 170.75

At first we obtain entries of A™ by (2.10):

63 —44 —40 63 —44 —115
dy(A*A)=| —44 48 —40 |+| —44 48 62 |+
—40 —40 299 ~115 62 170.75
63 —40 —115 48 —40 62
+| —40 299  —205 |+| —40 299 —205 |= 102060,
~11.5 —205 170.75 62 —205 170.75
2 —44 —40 2 —44 —115 2 —40 -115
lpy=| 0 48 —40 |+|0 48 62 |+| -5 299 —205 |=
—5 —40 299 4 62 170.75 4 —205 170.75

= 25779,
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and so forth. Continuing in the same way, we get

25779 —4905 20742 —5037

L1 —3840 —2880 —4800 —960
102060 | 28350 —17010 22680 —5670
39558 —18810 26484 —13074

Now we obtain the least squares solution of the system (3.9) by the matrix method.

9 25779  —4905 20742 —5037 1
O ] 1 —3840 —2880 —4800 —960 2|
| 29| 102060 | 28350 —17010 22680 —5670 3]
Y 39558 —18810 26484 —13074 1
73158 %i?é
1 —24960 | | —15
102060 | 56700 2
68316 5693

8505

Next we get the least squares solution with minimum norm of the system (3.9) by the
Cramer rule (3.3), where

2 7 3 1 1 26
P B B 21 _ | —24
“ |5 —9 7 12 31 | 10
4 15 —6.5 —10.5 1 —23
Thus we have
. 26 —44 —40 26 —44 —11.5
0
29 = —24 48 —40 |+ | —24 48 62 |+
102060 \| 19 _40 299 —23 62 170.75
N fg ;;13 —12%-55 73158 12193
23 05 17075 102060 ~ 17010
. 63 26 —40 63 26 —11.5
0
29 = —44 24 —40 |+ | —44 24 62 |+
—24 —40 62
—24960 416
+] 10 299 —205 || = = -
23 —205 170.75 102060 1o
. 63 —44 26 63 26 —11.5
0
) = —44 48 24 |+| —40 10 205 |+
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8 -2 62 56700 5
T —40 10 =205 = 150060 T o
62 —23 170.75
1 63 —44 26 63 —40 26
7y = 102060 —44 48 24 | +| —40 299 10 |+
-11.5 62 23 —-11.5 —-205 -—-23
48 —40 —-24
68316 5693
+| 40299 ~ 102060 8505
62 —205 -—23
2. Let us consider the following system of linear equations.
T, — Ty + 23+ x4 =1,
Tg— X3+ x4 = 2,
r1 — X2 +x3 + 224 = 3, (3-10)
T1 — X9+ T3+ x4 = 1.
1 -1 1 1
) ) ) ) 0O 1 -1 1 )
The coefficient matrix of the system is the matrix A = 1 -1 1 2] It is easy to
1 -1 1 1
verify the following:
3 -4 4 3 10 —-14 14 10
2 |0 1 —-10 s _|-1 2 -2 -1
A_4—554’A_13—181813’
3 -4 4 3 10 —-14 14 10

and rank A = 3, rank A2 = rank A3 = 2. This implies k = Ind(A) = 2. We obtain
entries of AP by (2.21).

10 —-14 10 14 10 10
3) —
dQ(A)_’—l 2 ’*’13 18’+’10 10’
n 2 =2 n 2 -1 n 18 13 _3
—18 18 —14 10 14 10| 7
dut — 3 —14 n 3 14 n 3 10 _ 4
=10 2 4 18 3 10| 7
and so forth.
0.5 05 —0.5 0.5
1.75 2.5 =25 1.75
. . . D _
Continuing in the same way, we get A~ = 195 15 —15 195" Now we
0.5 05 —-0.5 0.5
obtain the Drazin inverse solution X of the system (3.10) by the Cramer rule (3.5), where
3 -4 4 3 1 10
0 1 -1 0 2 -1
— A2y — _
e=AY=1, 5 5 4| [3] |13
3 -4 4 3 1 10
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Thus we have

. 1(] 10 -14 10 14 10 10 1
=g\l 21 2 13 18 10 10]) "%
R U I e I e e N A
273\ 21 1 13 18 10 10|) ="
s (|0 w0, [ 2 1], |18 18]\ _
=3\l 13 13 ~18 13 10 10]) "
. 1(]10 10 2 1], [18 18\ _1
T4=35\l 10 10 14 10 14 10|) 2

4. Cramer’s Rule of the Generalized Inverse Solutions of Some
Matrix Equations

Matrix equation is one of the important study fields of linear algebra. Linear matrix
equations, such as

AX =C, 4.1)
XB =D, 4.2)

and
AXB =D, 4.3)

play an important role in linear system theory therefore a large number of papers have
presented several methods for solving these matrix equations [45, 46, 47, 48, 49]. In [50],
Khatri and Mitra studied the Hermitian solutions to the matrix equations (4.1) and (4.3) over
the complex field and the system of the equations (4.1) and (4.2). Wang, in [51, 52], and Li
and Wu, in [53] studied the bisymmetric, symmetric and skew-antisymmetric least squares
solution to this system over the quaternion skew field. Extreme ranks of real matrices in
least squares solution of the equation (4.3) was investigated in [54] over the complex field
and in [55] over the quaternion skew field.

As we know, the Cramer rule gives an explicit expression for the solution of nonsingular
linear equations. Robinson’s result ( [33]) aroused great interest in finding determinantal
representations of a least squares solution as some analogs of Cramer’s rule for the matrix
equations (for example, [56, 57, 58]). Cramer’s rule for solutions of the restricted matrix
equations (4.1), (4.2) and (4.3) was established in [59, 60, 61].

In this section, we obtain analogs of the Cramer rule for generalized inverse solutions
of the aforementioned equations without any restriction.

We shall show numerical examples to illustrate the main results as well.

4.1. Cramer’s Rule for the Minimum Norm Least Squares Solution of Some
Matrix Equations

Definition 4.1. Consider a matrix equation

AX =B, 4.4)
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where A € C"™*" B € C™** are given, X € C"*® s unknown. Suppose
S; ={X|X € C"*,||AX — B|| = min}.

Then matrices X € C™*% such that X € S are called least squares solutions of the matrix
equation (4.4). If Xps = minxeg, || X||, then Xpg is called the minimum norm least
squares solution of (4.4).

If the equation (4.4) has no precision solutions, then X g is its optimal approximation.
The following important proposition is well-known.

Lemma 4.2. (/38]) The least squares solutions of (4.4) are
X=A"B+(I,- ATA)C,

where A € C™*"™ B € C™** are given, and C € C™*® is an arbitrary matrix. The least
squares minimum norm solution is X g = ATB.

We denote A*B =: B = (l;z]) e C™*s,

Theorem 4.3. (i) Ifrank A = r < m < n, then we have for the minimum norm least
squares solution X 1,5 = (z;;) € C"*% of (4.4) foralli =1,n, j =1, s

> (A (b)) g

Tij = petadl 3 (4.5)
> |ara) g
ﬂeJr, n
(ii) Ifrank A = n, then foralli =1,n, j = 1, s we have
det(A*A)z <BJ>
."L‘,;j = (46)

det(A*A)

where B,j is the jth column ofB forallj =1, s.

Proof. i) If rank A = r < m < n, then by Theorem 2.9 we can represent A™ by (2.5).
Therefore, we obtainforalli = 1,n,j =1, s

" n ool (A*A) , (23) 5|
Tii = ajibr; = €t b =
17 = 2 IR SH ?
€ T, n

S S |(AaTA) @) ] b

Bedr, n{i}
«A) B
> |ara) ]
BE€Jr, n
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Zk: a1;,x;
Zk: QgD

Since 3" a*,by; = = b ;, then it follows (4.5).
k

Zk: Dk
(i1) The proof of this case is similarly to that of (i) by using Corollary 2.3. m
Definition 4.4. Consider a matrix equation
XA =B, 4.7)
where A € C"™*" B € C**" are given, X € C**™ js unknown. Suppose
Sy = {X|X € C**™ || XA — B|| = min}.

Then matrices X € C**™ such that X € Sy are called least squares solutions of the
matrix equation (4.7). If X1s = minxeg, ||X||, then X g is called the minimum norm
least squares solution of (4.7).

The following lemma can be obtained by analogy to Lemma 4.2.
Lemma 4.5. The least squares solutions of (4.7) are
X =BA"T+C(,, - AA™),

where A € C™*" B € C**" are given, and C € C**™ is an arbitrary matrix. The
minimum norm least squares solutionis X = BA™.

We denote BA* =: B = (b;;) € C**™.

Theorem 4.6. (i) Ifrank A = r < n < m, then we have for the minimum norm least
squares solution X g = (x;5) € C¥*™ of (4.7) foralli =1,s, j =1,m

> [(aan); (b)) s

C!GIr,m{j}

T = (48)
’ > [(AA%) gl
QGIr,m
(ii) Ifrank A = m, then foralli =1,s, j = 1, m we have
det(AA*); (b;
Zij = — (A7), (b:) (4.9)

det(AA*)

where b;_ is the ith row of B forall i = 1, s.

Proof. (i) If rank A = r < n < m, then by Theorem 2.9 we can represent A™ by (2.6).
Therefore, forall i = 1, s, j = 1, m we obtain

. PR ((aa); @) s
aclrm]
xij:zbika:jzzbik' S [(AA%) 9| =
k=1 k=1 @

C!GIT, m
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Shabe T ((aa"), @) s
> [(AA) gl

CZGIT, m

Since foralli =1, s

S baal = (Zk: bikaj Zk:bz'k% §bikazm) — b,

k
then it follows (4.8).
(i1) The proof of this case is similarly to that of (i) by using Corollary 2.3. m
Definition 4.7. Consider a matrix equation
AXB =D, (4.10)
where A € C", B € CPX? D € C™*4 are given, X € C™*P is unknown. Suppose
S3 ={X|X € C"*? ||AXB — D|| = min}.

Then matrices X € C™*P such that X € Ss are called least squares solutions of the matrix
equation (4.10). If X1s = minxes,||X||, then X g is called the minimum norm least
squares solution of (4.10).

The following important proposition is well-known.
Lemma 4.8. (/36]) The least squares solutions of (4.10) are
X=A"DB" + (I, - ATA)V + W(I, - BB"),

where A € C7*", B € CPX? D € C™*Y are given, and {V,W} C C"*P are arbitrary
quaternion matrices. The minimum norm least squares solutionis X5 = ATDB™.

We denote D = A*DB*.

Theorem 4.9. (i) Ifrank A = r; < n and rankB = ry < p, then for the minimum
norm least squares solution Xy g = (;vz]) € C™*P of (4.10) we have

LT (a8) ]|
> |(ara)]
BEIrn

Tij = (4.11)

> |(BB9)2|

aGITQ,p

or

> |BBY); (dA)q
aclry p{s}

AP
> |ana)]
BETr n

wij = (4.12)

> (BB

aGITQ,p
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where
T
B ¥ ’(BB*)j. (&1) o S ’(BB*)j. ((L.) o[ @413)
a€lry p{s} a€lryp{j}
=1 ¥ ’(A*A).i (@) g > ’(A*A).i (a,) g’ 4.14)

BEJry n{i} a€lyy o {i}

are the column-vector and the row-vector, respectively. d;  is the i-th row of D for
alli =1,n, and d _j is the j-th column of D for all j = 1, p.

(ii) If rank A = n and rank B = p, then for the least squares solution X s = (x;5) €

C"™ P of (4.10) we have for alli = 1,n, j = 1, p,

det ((A*A),,- (d?))

%ii = Jei(A"A) - det(BB*)’ (4.15)
” et ((BB"),, (dA
A ditzj(&*]i]?- ciet(((;];z‘)’ (4-16)
where
B = [det ((BB*)j, (&1)) ..., det ((BB*) (&n m , 4.17)
dA .= [det ((A*A),,- (&,1>> det( pm (4.18)

are respectively the column-vector and the row-vector.

(iii) If rank A = n and rank B = ro < p, then for the least squares solution Xy g =

(xi5) € C™*P of (4.10) we have

det ((A*A); (dB
xij:det(Agm > $<5122>3|’ @

aGITQ,p

or

> |BBY); (dA)q
gy = hreld} (4.20)
Y det(A*A) Y |(BBY)yl ’

aGITQ,p

where d% is (4.13) and dﬁ is (4.18).

(iiii) If rank A = r1 < m and rank B = p, then for the least squares solution X1g =

(xi5) € C™*P of (4.10) we have
det (BB*);. (d#))

> |(ara)] - det(BBY)
BE Ty m

wij = (4.21)
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or

Bl (a2) 7|

."L‘,;j =
3 (A*A)g’ det(BB*)
BE T m

where dB is (4.17) and d;* is (4.14).

: 4.22)

Proof. (i) If A € C"*", B € C” and 1 < n, r2 < p, then by Theorem 2.9 the Moore-
Penrose inverses AT = (a;.;) € C™™ and BT = (b;’;) € C7%P possess the following
determinantal representations respectively,

L+ _ Beh nli} (ATA) (aikj> g’

> |ara) ]
BETr n

> |(BBY);.(b;)g]
+ a€lry p{j}

v >, |(BBY) gl

aGITQ,p

Since by Theorem 4.8 X1,¢ = ATDB™, then an entry of X g = (;;) is

q m
T = ( a;;dks> bl (4.24)
1

4.23)

s=1 \k=

Denote by d , the sth column of A*D =: D = (d;;) € C"™ forall s = T, q. It follows
from ) a* dps = d_ that
e

(A"A) (@) )

- 3 JZ {i} ’
cJr ,nt
Z(I?]_{:dks - Z : 3 dks =
k=1 k=1 > ’(A*A) g’
BEJIr,n
Yo laa) @)l de 2 [@aray(d) ]
BETry, n{i} k=1 _ Bery i} (4.25)
> |ara) ] > |ara) ]
BETr n BEIr) . n

Suppose e;. and e are respectively the unit row-vector and the unit column-vector whose
components are 0, except the sth components, which are 1. Substituting (4.25) and (4.23)
in (4.24), we obtain

2

(AaA), (d.) ] BB o)l

q . .
BE€Jry, n{i} a€lry p{s}
Tij = E %) o
&= > ’(A*A)ﬁ’ > |(BB*) g
s a€lrg,p

BETry
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Since .
d,=) e, b thet, Zdls 5= du, (4.26)
=1
then we have
."L‘,;j =
g9 P n A
LYY X |(AA) (e fldby X (BB (el
s=1t=11=1BeJr n{i} a€lry p{j} _
> |(ara)]] ¥ (BBl
BEJIr,n a€lryp

(A"A) (e) )| du 5 (BB (en) sl
a€lry p{i}

>, (BB g

aelrg,p

t=11=1BeJyy, n{i}

5 4.27)
> |

BETry,n

Denote by
db .=

> faray ()i = >y (A*A) (e.0) fldn

ﬁeJrl,n{i} =1 ﬁeJrl n{z}

the ¢-th component of a row-vector d& = (d4, ..., dg) for all t = 1, p. Substituting it in
(4.27), we have

p
Sodi X |(BB¥); (en)
T = =1 aelnyp{i}
1] .
> |(A*A) G Y (BB ¢
BEJIr,n a€lryp

Since Z d%e; = d2, then it follows (4.12).
If we denote by

p
=Y de Y BB (e)dl= Y BB @) @2s)
t=1  acly, ,{j} a€lry p{j}

the /-th component of a column-vector dB (d]13j, e dJBn)T for all [ = 1, n and substitute
it in (4.27), we obtain

> (A*A) , (e.) | dB
Ti [=16€ry, n{i}
iy = .
> |(aa)g] ¥ BByl
BEJIr,n a€lry p

n
Since 3 e,ldg = dB, then it follows (4.11).
=1
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(i) If rank A = n and rank B = p, then by Corollary 2.3 At = (A*A)~' A* and
B+ = B* (BB*) '. Therefore, we obtain

X5 = (A*A)"'A*DB* (BB*)" ! =

A A A
.1)11 .1‘12 e .'L‘lp Lll L21 e L?’Ll
A A A

N Codet(ATA) | L
A A A
xnl .fL‘ng e .CL‘np Ll?’L L27’L PP L?’L?’L
din d d R% RY RE
11 12 .- 1m 11 21 - ﬁl

7 7 7 B B
det(BB*) |0 .0 ]

7 7 7 B B B
d dup oo dum R® RS ... RS

where dN,J is ij-th entry of the matrix D, LA is the ij-th cofactor of (A*A) foralli,j = 1,n
and RB is the 7j-th cofactor of (BB*) for all i, 7 = 1, p. This implies

n p .
5 1A (z dkstBs)
Tis — k=1 s=1
Y det(A*A) - det(BB*)’

(4.29)

forallt =1,n

, p. We obtain the sum in parentheses and denote it as follows
p ~
Z — det(BB");. (dk,> = dB,,

where dj, . is the k-th row-vector of D for all k = T, n. Suppose dB . (dlj, ..., dB, )

oy Yng

_ n
is the column-vector for all j = 1, p. Reducing the sum ) LkAzdkBJ, we obtain an analog of
k=1

Cramer’s rule for (4.10) by (4.15).
Interchanging the order of summation in (4.29), we have

Z <Z L dkS>RB

i = det(A*A) det(BB*)’

We obtain the sum in parentheses and denote it as follows

i:LkAiJks = det(A*A) ; (E'l ) =: df},
k=1

where d_ is the s-th column-vector of D for all s = 1 , 0. Suppose dA (dﬁ, R dﬁ,)

ARB

is the row-vector for all i = 1, n. Reducing the sum Z dis R,

we obtain another analog

of Cramer’s rule for the least squares solutions of (4. 10) by (4.16).
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(i) If A € C77*", B € CPX%and ry = n, ro < p, then by Remark 2.12 and Theorem
2.9 the Moore-Penrose inverses AT = (a;’}) € C™™ and BT = (b;’;) € C7*P possess

the following determinantal representations respectively,

S det (A*A) , (af‘})

ij det (A*A)

2 ImB, )
+ a€lry p1J

= . (4.30)
! > |(BB*)§]

aGITQ,p

Since by Theorem 4.8 X5 = ATDB™, then an entry of X5 = (2;5) is (4.24). Denote

by d  the s-th column of A*D =: D = (d;j) € C™*4 for all s = 1,q. It follows from
Y a*dis = d. , that
e

m m * * det A*A : dAs
Z(ﬁdkszzdet(A A) @), ( ).z( . ) Wi
ik det (A*A) det (A*A)
k=1 k=1
Substituting (4.31) and (4.30) in (4.24), and using (4.26) we have
. - |(BB*);.(b;) &l
7 det (A A)z (ds> C!GIy%,:p{j} J
Y9 2T et (AA) > [BBYa
8= a€lryp
Al * [k * @
> 2. 2 det (ATA) ;(eq)disby >0 [(BBY);. (en) gl
s=1t=1]=1 a€lry p{j} _
det (A*A) > [(BB*)g] a
a€lry,p
P n -
> > det (A*A) ;(eq) dir > |[(BBY);. (er)q]
t=1[=1 a€lry p{j} (4 32)
det (A*A) > |(BB*)g] '
a€lry,p

If we substitute (4.28) in (4.32), then we get

Y. det (A*A) ;(e) d}?
=1

T det (AFA) Y [(BBY) 4

aGITQ,p

n
Since again | e.ld}? = d%, then it follows (4.19), where d% is (4.13).
=1

If we denote by
d{? =
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zn:det(A*A).i( ) Zdet (A*A) | (e;) di

the ¢-th component of a row-vector dA (dﬁ, s dg) for all t = 1, p and substitute it in
(4.32), we obtain

Sdd Y (BB (en)d

t=1 a€lry p{j}
det (A*A) >  [(BB*)g|

a€lryp

.CL‘,'j =

Since again Z d%e; = d, then it follows (4.20), where d2 is (4.18).

(iiii) The proof is similar to the proof of (iii). m
4.2. Cramer’s Rule of the Drazin Inverse Solutions of Some Matrix
Equations

Consider a matrix equation
AX =B, (4.33)

where A € C"*" with IndA = k, B € C"*" are given and X € C™*™ is unknown.

Theorem 4.10. ([62], Theorem 1) If the range space R(B) C R(AF), then the matrix
equation (4.33) with constrain R(X) C R(AF) has a unique solution

X = APB.
We denote AFB =: B = (3,]) e cmm,

Theorem 4.11. If rank A**! = rank A* = r < n for A € C"™™, then for the Drazin
inverse solution X = APB = (x;;) € C"*™ of (4.33) we have foralli = 1,n, j = 1,m,

sl )

BEJIr, n{i}

> |
ﬂeJr, n

Tij = (4.34)

Proof. By Theorem 2.29 we can represent A” by (2.21). Therefore, we obtain for all
i: 17naj = 17m’

el KT )
e ;agbsj - SZ:; ﬂeJm{;: ’(Ak—i-l) g’ “bgj =
BEIr,n
ﬂGJgjn{i} Zg:l ’(Akjl (aglz))) g’ < byj
> kg
BEIr,n
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k
Z ags) bsj
S
k
Z aés) bsj
S

Since Y a¥b,; = — b, then it follows (4.34). m
S

. k
Zs: agLs) bsj
Consider a matrix equation
XA =B, (4.35)

where A € C"™*™ with IndA = k, B € C™*™ are given and X € C"*™ is unknown.

Theorem 4.12. ([62], Theorem 2) If the null space N(B) D N(AF), then the matrix
equation (4.35) with constrain N (X) D N (A¥) has a unique solution

X =BAP.
We denote BA¥ =: B = (b;;) € C"™*™.

Theorem 4.13. If rank At = rank A* = r < m for A € C™ ™, then for the Drazin
inverse solution X = BAP = (z;;) € C"™™ of (4.35), we have foralli =1,n, j = 1,m,

> (A m) e

aGIr,m{j}

> (AR gl

CZGIT, m

(4.36)

.CL‘,'j =

Proof. By Theorem 2.29 we can represent A” by (2.20). Therefore, we obtain for all
1= 17—”’ Jj=1m,

W T ()
ZZbD:me{}z AR

CZGIT, m

POUEE DY ’(A’;“ (ag’?)>> o

a€lrm{j}

> (A gl

CZGIT, m

Since forallt = 1,n
S balt) = (Shual) Lol o Shualil) < b,

then it follows (4.36). m
Consider a matrix equation
AXB =D, (4.37)

where A € C™*" with IndA = k1, B € C™*™ with IndB = ky and D € C™*™ are
given, and X € C™*" is unknown.
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Theorem 4.14. ([62], Theorem 3) If R(D) C R(A*) and N(D) > N(B*), k =
max{ky, ko}, then the matrix equation (4.37) with constrain R(X) C R(A¥*)and N(X) D

N (BF¥) has a unique solution
X = APDB”.

We denote AMDBF2 =: D = (z%) e cmm,

Theorem 4.15. [frank A¥1 ™! = rank A" = 1| < nfor A € C"*", and rank BF2+! =
rankBf2 = r < m for B € C™*™, then for the Drazin inverse solution X =
APDBP =: (z;;) € C™™ of (4.37) we have

Z Ak1-+1 (d B) ﬂ’
ﬂeJrl,n{i} ) 3] B

Tij = - 3 — (4.38)
DRI D[t KRS
ﬂeJrl,n aelrz,m
or
ko+1
> [BET(as)s
gy = —2raml] 4.39)
L/ ; .
DRRIECES I S (=K
ﬂeJrl,n aelrz,m
where
T
%= | 3 [BpEt(du)ale X BET(da)s]| . @ao
aeITQ,m{j} ae[rg,m{j}
at=| > ’Aﬁl“(ﬁ.l)g,---, > ’Aﬁ”l(ﬁ.m)g]
ﬂeJrl,n{i} aelrl,n{i}

are the column-vector and the row-vector. d;. and d j are respectively the i-th row and the

j-th column off)for alli=1,n,j=1,m.

Proof. By (2.21) and (2.20) the Drazin inverses A” = <a5> € C"*" and BP = <b5> €
C™>™ possess the following determinantal representations, respectively,
> Ak (a(k1)> ﬂ’
ﬂGJrl,n{i} X3 .J B

> |amtng)
BEJr,n

aij ==

Z Bl?z—i-l (b(kQ)) a
D _ a€lrym{j} o .
v > [(BRt) o

aGIrz,m

4.41)

Then an entry of the Drazin inverse solution X = APDB? =: (,;) € C"™™ is
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Tij = Z (Za dts> (4.42)

s=1 \t=1

Denote by d , the s-th column of A¥D =: D = (dw) e C»™ for all s = 1, m. It follows
from ) agdts =d , that
t

Al (af) g
s =

N JZ {i}

EJdry,n?

S afa, = ﬁ

t=1 t=1 > ’(Akﬁl) g’
ﬁeJTl,n

’Ak1+1 ( (k1)> g’ cdy,

ki+1 (1 \ 8
A (d)5

BEdry n i} =1  Bedi ) @.43)
5 ’(Akl—i-l)g’ > ’(Aklﬂ)g’
BeTrn BETry.m

Substituting (4.43) and (4.41) in (4.42), we obtain

k1+1 X
Al () 5

’Bkz—i-l b(kz))

o €y ni} {J}
= IRV O RCGOR
B a€l,
ﬂeJrl,n r2.m

Suppose e;. and e are respectively the unit row-vector and the unit column-vector whose
components are 0, except the sth components, which are 1. Since

d, =Y euds, bl =S"00Pe, ST = dy,
=1 t=1 s=1

then we have

."L‘,‘j =

LYY Y [At e last? w o [t
s=1t=11=1p3€eJr n{i} a€lry m{j} _
Ol (PR FID DRNTe: LR FH

ﬂeJrl,n ae[rg,m

m ~

Yy ¥ [AMTenjld T [BE(e)s

t=11=13€Jr n{i} a€lrym{j} (4.44)
> |@ki g S|k gl |
ﬂeJrl,n aGIrg,m

Denote by
dﬁ =

> [ 3=

ﬂeJrl,n{i} =1 ﬂeJrl n{z}

NgE

> AR e 5l
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the ¢-th component of a row-vector d* = (d4, ..., d2 ) for all t = T, m. Substituting it in
(4.44), we obtain

b Y [Bi(en)s
Lii = =1 a€lrym{j}
Ty a2 eyl

BEJIr,n a€lrym

m
Since > dfe; = d2, then it follows (4.39).
=1
If we denote by

m

7 ka+1 ko+1,73
B=3d 3 ]Bj# (et.)g’ - ¥ ’Bj# (dy)®
t=1 a€lry m{j} a€lry m{j}

the [-th component of a column-vector d% = (d]13j, ey ijn)T for all [ = 1, n and substitute
it in (4.44), we obtain
L ky+1
Al (o) | dF
=1 B€Jr, n{i}
> |k
BEIry,n

.CL‘,'j =

S |(BRt) g

aGIrz,m

n
Since ) e,dj} = d¥, then it follows (4.38). =
=1

4.3. Examples

In this subsection, we give an example to illustrate results obtained in the section.
1. Let us consider the matrix equation

AXB =D, 4.45)
where
1 7 7 1 ¢+ 1
;. —1 -1 1 —1 1 0 1
A= 0 1 0|’ B <—1 i 1 > » D 1 72 0
-1 0 — 01 ¢

Since rank A = 2 and rank B = 1, then we have the case (ii) of Theorem 4.9. We shall
find the least squares solution of (4.45) by (4.11). Then we have

32 3 s s - 1 —i
A*A=|-2i 3 2|, BB = <3, 3Z>, D=ADB = |- -1],
3 2 3 ! i -1
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and ) [(BB*)%|=3+3=6,

aGIL 2

B€J2, 3

By (4.17), we can get

1 —1
dB=1|—-i|, dB=[-1
—1 -1
1 2 3t
Since (A*A) | (dB) = (—i 3 2|, then finally we obtain
- 2 3
> (A*A) 4 (d%) g’ det 1. 2i + det 1. 31
BEJ2, 3{i} -1 3 )
= F o 60
> [(A*A)g > [(BB¥),
ﬂGJQ’E} CZGIl,Q
Similarly,
—i 21 —i 3
_det<_1 3>+det<_1 3> o
12 = 60 ~ 60
3 1 -1 2
et <—2i —i> et <—i 3> 2i
= 60 60’
3 1 -1 2
det <—2z _1> + det <_1 3> 5
€22 = 60 _@7
3 3 —1
- det <—3i B > + det <2 —i> o
xr31 = 60 - _@7
3 —1 3 —1
det <—3i _1> + det <2 _1> 1
T2 = 60 T
2. Let us consider the matrix equation (4.45), where
2 0 0 1 -1 1 1 ¢+ 1
A=|-i i i|,B=|i —i i|],D=[i 0 1
-1 —1 —1 -1 1 2 1 ¢+ 0

We shall find the Drazin inverse solution of (4.45) by (4.11). We obtain

4 00 8 0 0
A= 2-2i 0 0|,A%=[4—-4i 0 0],
—2-2 0 0 —4—4i 0 0
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—1 i 3—1
B? = 1 ~1 1+3i
-34+1 3—1 3+1
Since rank A = 2 and rank A2 = rank A2 = 1, then k; = Ind A = 2 and r; = 1. Since
rank B = rank B2 = 2, then ky = Ind B = 1 and r5 = 2. Then we have

B —4 4 8
D=A’DB=|-2+2i 2-2 4-—4i |,
242 —2-2 —4-—4
and Y (A3)g’:8—|—0—|—0:8,
BeJ1,3
> B2 a] =
OLGIQ’;;

-1 1 -1 143 - 33—\

det<1 —1>+det<3—z’ 3—|—i>+det<—3—|—i 3—|—z’>_
04 (=9—9i) 4+ (9 — 9i) = —18i.

By (4.13), we can get

12 —12i —12 +12i 8
dB = —-12¢ |,dB= 124 ,dB=[-12-12i
12 12 —12+12i
12—12i 0 0
Since A3, (dB)=| —12 0 0|, then finally we obtain
-12 0 0

> A% (@B) )

e s(l) 7 12-12i 144
T11 = = ~ = .
S ojang o oqmy & 18012
Be€J13 a€ls 3
Similarly,
—12412i  —1—3 8 i

€T = = s €T = — Y = s

127 8 (—184) 12 B8 (—18i) 18
—12i 1 12i 1 —12-12i 1—i
= - = — €T = — = —_—, €T = - = s

AT (C18) 120 BT 8 (C18) 120 BT 8 (—18) | 12
12 i ~12 i 12412 —1—i
= — = — — €T = — = — . I g e
TRTS s 120 TR TR (18 127 BT R (L1812
Then .
14i  =1— i
112 121 11_87;
X = 2 T 12 12
_ L A —1—i
12 12 12

is the Drazin inverse solution of (4.45).
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5. An Application of the Determinantal Representations of the
Drazin Inverse to Some Differential Matrix Equations

In this section we demonstrate an application of the determinantal representations (2.20)
and (2.21) of the Drazin inverse to solutions of the following differential matrix equations,
X'+ AX = B and X’ + XA = B, where the matrix A is singular.

Consider the matrix differential equation

X' +AX =B (5.1

where A € C™*", B € C™*"™ are given, X € C™*" is unknown. It’s well-known that the
general solution of (5.1) is found to be

X (t) = exp At </ exph? dt> B

If A is invertible, then

/eprt dt = A expAt +G,
where G is an arbitrary n x n matrix. If A is singular, then the following theorem gives an
answer.

Theorem 5.1. ([63], Theorem 1) If A has index k, then
k—1

A A? A
/eprt dt = AP exp® +(I - AAP)t [I + ot P+

St 5 o t’f‘l] +G.

Using Theorem 5.1 and the power series expansion of exp ™A

for a general solution of (5.1)
X(t) =
{AD +(I—AAP) (I —Ap AN ...(—1)’f—1%t’f—1> + G} B.

, we get an explicit form

If we put G = 0, then we obtain the following partial solution of (5.1),
X(t) = APB+ (B— APAB)t— 3(AB— APA?B)2 + ...
CD(A1B — APAFB) .
Denote A'B =: BY) = (b)) € C"*" forall 1 = T, 2k.
Theorem 5.2. The partial solution (5.2), X(t) = (x;;), possess the following determinantal

representation,
(A% (55)) 3

(5.2)

(3 (547) 4

£ {8 seJr, n{i}

ij — - + | b — ] ;
RN L R N S H

1 [ 7(1)  BeIr ni{i} (Alﬁl (b‘(5+2)>> g’ )
2| Y% 5 ’(Ak+1)§’ e+ ... 5.3)

BETr n
E+1(2(2R)\ 8

(=n* plk=1) _ ﬁEJ?n{i} (A‘i (b‘j >> ﬁ’ "

k! ij ) ’(Ak+1) g’

BETr n
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foralli,j=1,n.

Proof. Using the determinantal representation of the identity A” A (2.27), we obtain the
following determinantal representation of the matrix AP A™B := (Yij),

n

kL (g (k+1) (m—1), |
Yij = ZstZa(m 1) bt] — Z szzjl (Az (a's )) Z Qg bt] B
BETrn{i} 3 ’(Ak—i—l ﬂ’
ﬂe‘]”‘,n
n g N
3 t; ﬂ’. ZNNP D (A’fjl (b.j+ )) g’

sl > |k > Ak g
ﬂeJr,n ﬂGJr,n

(A5 (@ ktm))

for all 4,5 = 1,n and m = 1, k. From this and the determinantal representation of the
Drazin inverse solution (4.34) and the identity (2.27) it follows (5.3). =

Corollary 5.3. If IndA = 1, then the partial solution of (5.1),
X(t) = (zi5) = AB + (B—- AYAB)t,

possess the following determinantal representation

PO CCE
sef n{z} .1 .J B set n{z} .1 .J B
Tij = . 3 + | bij — : 3 t. 5.4
VO > |ar ]
ﬂeJr, n ﬁeJr, n
foralli,j =1,n.

Consider the matrix differential equation

X' +XA=B (5.5

where A € C"*", B € C™*"™ are given, X € C™*" is unknown. The general solution of

(5.5) is found to be
X(t) = Bexp At </ expAt dt>

If A is singular, then an explicit form for a general solution of (5.5) is

X(t) =
B {AD +(I— AAD)t (1 Ap A2 ...(—1)k—1%tk—1) + G} :
If we put G = 0, then we obtain the following partial solution of (5.5),
X(t)=BAP + (B-BAAP)t — 1(BA —BAZAP)1? +
=Dkt 1)‘“ ! (BAF~1 — BAFAD)tk (5.6)

Denote BA! =: B() = (b(l)) € C™" " for all | = 1, 2k. Using the determinantal represen-
tation of the Drazin inverse solution (4.36), the group inverse (2.25) and the identity (2.26)
we evidently obtain the following theorem.
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Theorem 5.4. The partial solution (5.6), X(t) = (x;;), possess the following determinantal
representation,

TP L O P (S L
Tij = > [(Ak+) g + | bij — o (Gar .
a€lpn =z
E+1 (1 (k+2)\\ o
L[ pd) _ e€lnnis) ’(Aﬁl(bi‘ >> a’ 12
T > [(Ar) g + ...
aclrn
N
(_1)k 7 (k—1) . aejgl{j} ’(Af+1 (bzﬂ >> a’
k! ij QEXI: ‘(Ak+1)g‘

foralli,j =1,n.
Corollary 5.5. If IndA = 1, then the partial solution of (5.5),
X(t) = (z;5) = BAY + (B—- BAAY)t,

possess the following determinantal representation

> |(az (BY)) s

g — €I} . aclrn{j} "
= 77 .
Y 2 (A% gl ’ > (A% gl

aGI,«,n ae[r,n

foralli,j =1,n.

5.1. Example

1. Let us consider the differential matrix equation

X'+ AX = B, 5.7
where
1 -1 1 1 ¢ 1
A= i —i +],B=1[|¢ 0 1
-1 1 1 2 0

Since rank A = rank A2 = 2, then k = Ind A = 1 and r = 2. The matrix A is the group
inverse. We shall find the partial solution of (5.7) by (5.4). We have

—i i 3-i\ 2—i 2 0
A? = 1 -1 1+43i|,BO=AB=[(1+2i -2 0],
—34i 3—i 3+i 1+i 4 0

~ 2-2 2+43i 0
B® =AB=[2+2i -3+2i 0
1+5 -2 0
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and

2

A2 ﬁ’ —
acJa 3 ( )ﬁ
i “1 1430 —i3—d)
d“<1 -4>+d“<3—i 3+i>+d“<—3+i3+4>_
0+ (=9 — 9i) + (9 — 9i) = —18i.
9-i i 3-i

since (A%) | (b)) = (1420 -1 1+3i] and
L+i 3—i 3+4i

R 2-2 i 3—i
(a3, (b7) = [2+20 -1 143,
14+5i 3—i 3+i

then finally we obtain

A2 B(l) B Z A2 B(Q) B
N E A N G
VOH NCH
BEJ2 3 BEJ2 3
3—31 —18¢ 1412
“Tsi T (1 - —182) t= 3
Similarly,
—3+3i (. 949 1—i 14
= - t= S a3 =0+ (1—0)t =t
BRTY <Z —48i> g T g b me=0td-0)i=t
3+3i (. —18 14
= T <Z -—18i> 6
—3 -3 —9+9i 1—i 1+
= - t= t, o3 =0+ (1—0)t =t
TR < —18i > g T g pes=0+1-0t=t
120 (18,2
€T = f— —_
TR —18i 3’
9+3i (. —18 —1+3i
= gt <Z -—18i> g T =0+0-0)
Then

L 1+ Sl (3430t
X=c| ~1+i 1—i+(@+3i)t ¢
4 —1+3i 0

is the partial solution of (5.7) .
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6. Conclusion

From student years it is well known that Cramer’s rule may only be used when the
system is square and the coefficient matrix is invertible. In this chapter we are consid-
ered various cases of Cramer’s rule for generalized inverse solutions of systems of linear
equations and matrix equations when the coefficient matrix is not square or non-invertible.
The results of this chapter have practical and theoretical importance because they give an
explicit representation of an individual component of solutions independently of all other
components. Also the results of this chapter can be extended to matrices over rings (and
now this is done in the quaternion skew field), to polynomial matrices, etc.
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Chapter 9

RELATION OF ROW-COLUMN DETERMINANTS
WITH QUASIDETERMINANTS OF MATRICES
OVER A QUATERNION ALGEBRA

Aleks Kleyn'* and Ivan I. Kyrchei*'
! American Mathematical Society, USA
2Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics, Lviv, Ukraine

Abstract

Since product of quaternions is noncommutative, there is a problem how to determine a
determinant of a matrix with noncommutative elements (it’s called a noncommutative
determinant). We consider two approaches to define a noncommutative determinant.
Primarily, there are row — column determinants that are an extension of the classical
definition of the determinant; however we assume predetermined order of elements
in each of the terms of the determinant. In the chapter we extend the concept of an
immanant (permanent, determinant) to a split quaternion algebra using methods of the
theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on
these properties, analogs of the classical adjont matrix over a quaternion skew field
have been obtained. As a result we have a solution of a system of linear equations
over a quaternion division algebra according to Cramer’s rule by using row—column
determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix in-
version. By using quasideterminants, solving of a system of linear equations over a
quaternion division algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quaside-
terminants is that we have not one determinant of a quadratic matrix of order n with
noncommutative entries, but certain set (there are n? quasideterminants, n row deter-
minants, and n column determinants). We have obtained a relation of row-column
determinants with quasideterminants of a matrix over a quaternion division algebra.

*E-mail address: Aleks_Kleyn @MailAPS.org
TE-mail address: kyrchei@online.ua
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1. Introduction

Linear algebra is a powerful tool that we use in different areas of mathematics, including
the calculus, the analytic and differential geometry, the theory of differential equations, and
the optimal control theory. Linear algebra has accumulated a rich set of different methods.
Since some methods have a common final result, this gives us the opportunity to choose the
most effective method, depending on the nature of calculations.

At transition from linear algebra over a field to linear algebra over a division ring,
we want to save as much as possible tools that we regularly use. Already in the early
XX century, shortly after Hamilton created a quaternion algebra, mathematicians began
to search the answer how looks like the algebra with noncommutative multiplication. In
particular, there is a problem how to determine a determinant of a matrix with elements
belonging to a noncommutative ring. Such determinant is also called a noncommutative
determinant.

There were a lot of approaches to the definition of the noncommutative determinant.
However none of the introduced noncommutative determinants maintained all those prop-
erties that determinant possessed for matrices over a field. Moreover, in paper [1], J. Fan
proved that there is no unique definition of determinant which would expands the definition
of determinant of real matrices for matrices over the division ring of quaternions. There-
fore, search for a solution of the problem to define a noncommutative determinant is still
going on.

In this chapter, we consider two approaches to define noncommutative determinant.
Namely, we explore row-column determinants and quasideterminant.

Row-column determinants are an extension of the classical definition of the determi-
nant, however we assume predetermined order of elements in each of the terms of the
determinant. Using row-column determinants, we obtain a solution of a system of linear
equations over a quaternion division algebra according to Cramer’s rule.

Quasideterminant appeared from the analysis of the procedure of a matrix inversion.
Using quasideterminant, solving of a system of linear equations over a quaternion division
algebra is similar to the Gauss elimination method.

There is common in definition of row and column determinants and quasideterminant.
In both cases, we have not one determinant in correspondence to quadratic matrix of or-
der n with noncommutative entries, but certain set (there are n? quasideterminant, n row
determinants, and n column determinants).

Today there is wide application of quasideterminants in linear algebra ([2, 3]), and in
physics ([4, 5, 6]). Row and column determinants ([7, 8]) introduced relatively recently
are less well known. Purpose of the chapter is establishment of a relation of row-column
determinants with quasideterminants of a matrix over a quaternion algebra. The authors are
hopeful that the establishment of this relation can provide mutual development of both the
theory of quasideterminants and the theory of row-column determinants.
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1.1. Convention about Notations

There are different forms to write elements of a matrix. In this paper, we denote a;; an
element of the matrix A. The index ¢ labels rows, and the index j labels columns.
We use the following notation for different minors of the matrix A.

a;  the ¢-th row
Ag . the minor obtained from A by selecting rows with index from the set S
A’ the minor obtained from A by deleting row a; .
A®-  the minor obtained from A by deleting rows with index from the set S
a ; the j-th column
A 7 the minor obtained from A by selecting columns with index from the set T’
A7 the minor obtained from A by deleting column a j
AT the minor obtained from A by deleting columns with index from the set T’
A j (b) the matrix obtained from A by replacing its j-th column by the column b
A; (b) the matrix obtained from A by replacing its i-th row by the row b

Considered notations can be combined. For instance, the record

Al (b)

means replacing of the k-th row by the vector b followed by removal of both the i-th row
and the i-th column.

As was noted in section 2.2 of the paper [9], we can define two types of matrix products:
either product of rows of first matrix over columns of second one, or product of columns of
first matrix over rows of second one. However, according to the theorem 2.2.5 in the paper
[9], this product is symmetric relative operation of transposition. Hence in the chapter, we
will restrict ourselves by traditional product of rows of first matrix over columns of second
one; and we do not indicate clearly the operation like it was done in [9].

1.2. Preliminaries. A Brief Overview of the Theory of Noncommutative
Determinants

Theory of determinants of matrices with noncommutative elements can be divided into
three groups regarding their methods of definition. Denote M(n, K) the ring of matrices
with elements from the ring K. One of the ways to determine determinant of a matrix of
M (n, K) is following ([11, 12, 13]).

Definition 1.1. Let the functional
d:M(n,K)—K

satisfy the following axioms.
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Axiom 1. d (A) = 0 iff A is singular (irreversible).
Axiom 2. VA, B M (n,K),d(A-B)=d(A)-d(B).

Axiom 3. If we obtain a matrix A’ from matrix A either by adding of an arbitrary
row multiplied on the left with its another row or by adding of an arbitrary column
multiplied on the right with its another column, then

d(A")=d(A)

Then the value of the functional d is called determinant of A € M (n, K). ]

The known determinants of Dieudonné and Study are examples of such functionals.
Aslaksen [11] proved that determinants which satisfy Axioms 1, 2 and 3 take their value
in some commutative subset of the ring. It makes no sense for them such property of con-
ventional determinants as the expansion along an arbitrary row or column. Therefore a
determinantal representation of an inverse matrix using only these determinants is impossi-
ble. This is the reason that causes to introduce determinant functionals that do not satisfy
all Axioms. Dyson [13] considers Axiom 1 as necessary to determine a determinant.

In another approach, a determinant of a square matrix over a noncommutative ring is
considered as a rational function of entries of a matrix. The greatest success is achieved
by Gelfand and Retakh [14, 15, 16, 17] in the theory of quasideterminants. We present
introduction to the theory of quasideterminants in the section 5.

In third approach, a determinant of a square matrix over a noncommutative ring is con-
sidered as an alternating sum of n! products of entries of a matrix. However, it assumed
certain fixed order of factors in each term. E. H. Moore was first who achieved implementa-
tion of the key Axiom 1 using such definition of a noncommutative determinant. Moore had
done this not for all square matrices, but only for Hermitian. He defined the determinant of
a Hermitian matrix! A = (a,'j)nxn over a division ring with involution by induction over n
following way (see [13])

aii, n=1
o n
MdetA =4 s~ g, Mdet (A(i — j)), n>1 1.1
j=1
Here g1 = { _i’ z ; j ,and A (i — j) denotes the matrix obtained from A by replac-

ing its j-th column with the ¢-th column and then by deleting both the ¢-th row and column.
Another definition of this determinant is presented in [11] by using permutations,

Mdet A = E ‘U‘anunlz Tt Qnypngg " Gngingg st Gnggyngy -
O’GSn

Here .S, is symmetric group of n elements. A cycle decomposition of a permutation ¢ has
form,
g = (7211 .. .nul) (n21 .. .n212) N (nTl .. .nTlT) .

"Hermitian matrix is such matrix A = (a;;) that a;; = @;;.
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However, there was no any generalization of the definition of Moore’s determinant to
arbitrary square matrices. Freeman J. Dyson [13] pointed out the importance of this prob-
lem.

L. Chen [18, 19] offered the following definition of determinant of a square matrix over
the quaternion skew field H, by putting for A = (a;;) € M (n, H),

det A = Z E(J)anm-aim...-aism-...-aka e Qg
O’GSn
o= (nyig...is)...(npka. .. k),
Ny > 09,13, ...,0s;...,Np > ko, k3, ..., ki,

n=ny>ng>...>n, > 1.

Despite the fact that this determinant does not satisfy Axiom 1, L. Chen got a determinantal
representation of an inverse matrix. However it can not been expanded along arbitrary rows
and columns (except for n-th row). Therefore, L. Chen did not obtain a classical adjoint
matrix as well. For A = (ay,...,a,) over the quaternion skew field H, if ||A| :=
det(A*A) # 0, then 3A~! = (b)), where

1 . _
bjk:mwkja (]7k:17n)7

*
Wgj = det (Ozl e R e 77 e 7 RN an_15k) (Ozl s Q10 .. .an_laj) .

Here «; is the i-th column of A, dy is the n-dimensional column with 1 in the k-th entry
and 0 in other ones. L. Chen defined ||A|| := det(A*A) as the double determinant. If
|A || # 0, then the solution of a right system of linear equations

n
Dy @it =1

over H is represented by the following formula, which the author calls Cramer’s rule

_1_
r; = ||A[|7 Dy,

for all 7 = 1, n, where

Dj:det (Ozl cee Q1 Op Oyl ... Qp1 Ozj).

Here o is the i-th row of A* and (3* is the n-dimensional vector-row conjugated with /3.

In this chapter we explore the theory of row and column determinants which develops
the classical approach to the definition of determinant of a square matrix, as an alternating
sum of products of entries of a matrix but with a predetermined order of factors in each of
the terms of the determinant.

Complimentary Contributor Copy



304 Aleks Kleyn and Ivan I. Kyrchei

2. Quaternion Algebra

9

b
A quaternion algebra H(a, b) (we also use notation <%> ) is a four-dimensional

vector space over a field IF with basis {1, ¢, j, k} and the following multiplication rules:

2= a,
j*=b,
ij =k,
ji = —k.

The field F is the center of the quaternion algebra H(a, ).
In the algebra H(a, b) there are following mappings.

e A quadratic form
n:x€H —-n(x)elF

such that
n(z-y) =n(z)n(y) z,yeH

is called the norm on a quaternion algebra H.
e The linear mapping
trrx=a'+ati+a?+alkeH - t(x)=22"€cF

is called the trace of a quaternion. The trace satisfies permutability property of the
trace,

t(g-p)=tp-q-.
From the theorem 10.3.3 in the paper [9], it follows

t(x) = %(w — izt — jxj — kxk). (2.1)

e A linear mapping
r—T=t(zr)—x (2.2)

is an involution. The involution has following properties

T=ux,
r+y=7T+7Y,
TY=7 T

A quaternion 7 is called the conjugate of z € H. The norm and the involution satisfy
the following condition:

n(g) = n(q)-

The trace and the involution satisfy the following condition,

t(z) = t(x).
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From equations (2.1), (2.2), it follows that
1
T = —i(x +izi + jxj + kxk).

Depending on the choice of the field I, a and b, on the set of quaternion algebras there
are only two possibilities [20]:

b
1. <aﬁ? > is a division algebra.

b
2. % is isomorphic to the algebra of all 2 x 2 matrices with entries from the field

F. In this case, quaternion algebra is splittable.
The most famous example of a non-split quaternion algebra is Hamilton’s quaternions
H= (_1@_1 ), where R is real field. The set of quaternions can be represented as

H={¢=q + @i+ qj+ak @ a,qe qacR},

where i> = j?2 = k> = —1 and ijk = —1. Consider some non-isomorphic quaternion
algebra with division.

b
1. <aﬂ,§ > is isomorphic to the Hamilton quaternion skew field H whenever ¢ < 0 and
. (a,b\ . .
b < 0. Otherwise <—]R > is splittable.

2. If F is the rational field Q, then there exist infinitely many nonisomorphic division

b :

quaternion algebras <%> depending on choice of a < 0 and b < 0.

3. Let Q, be the p-adic field where p is a prime number. For each prime number p there
is a unique division quaternion algebra.

The famous example of a split quaternion algebra is split quaternions of James Cockle
Hg (%), which can be represented as

Hs = {q¢=qo + qii + @25 + @3k; qo,q1, @2, g3 € R},

where i2 = —1, j2 = k? = 1 and ijk = 1. Unlike quaternion division algebra, the
set of split quaternions is a noncommutative ring with zero divisors, nilpotent elements
and nontrivial idempotents. Recently there was conducted a number of studies in split
quaternion matrices (see, for ex. [21, 22, 23, 24]).

3. Introduction to the Theory of the Row and Column
Determinants over a Quaternion Algebra

The theory of the row and column determinants was introduced [7, 8] for matrices over
a quaternion division algebra. Now this theory is in development for matrices over a split
quaternion algebra. In the following two subsections we extend the concept of immanant
(permanent, determinant) to a split quaternion algebra using methods of the theory of the
row and column determinants.
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3.1. Definitions and Properties of the Column and Row Immanants

The immanant of a matrix is a generalization of the concepts of determinant and per-
manent. The immanant of a complex matrix was defined by Dudley E. Littlewood and
Archibald Read Richardson [25] as follows.

Definition 3.1. Let o € S,, denote the symmetric group on n elements. Let x : S, — C be
a complex character. For any n x n matrix A = (a;;) € C"*" define the immanent of A
as

Imm, (A) = Z x() H o (i)
oc€Sn i=1

Special cases of immanants are determinants and permanents. In the case where x is the
constant character (x(z) = 1forall z € S,), Imm, (A) is the permanent of A. In the case
where Y is the sign of the permutation (which is the character of the permutation group as-
sociated to the (non-trivial) one-dimensional representation), Imm, (A) is the determinant
of A.

Denote by H™*"™ a set of n x m matrices with entries in an arbitrary (split) quaternion
algebra H and M (n, H) a ring of matrices with entries in H. For A = (a;;) € M (n, H) we
define n row immanants as follows.

Definition 3.2. The i-th row immanant of A = (a;;) € M (n, H) is defined by putting
rImm; A = Z X(U)aiikl i iy g1 -+ iy g -+ - Ciging 1 - - - Bigy 1,k
O’GSn

where left-ordered cycle notation of the permutation o is written as follows

o= (Z Uy Ty 41 - - -ikl—i-ll) (ikgikg—‘rl .. 'ikz—i-lz) o (ikrik,«+1 .. -ikr—i—l,«) . 3.1

Here the index i starts the first cycle from the left and other cycles satisfy the following
conditions
ikQ < ik3 < ... < ik,«, ikt < ikH_S. 3.2)

forallt=2,rand s = 1,1,
Consequently we have the following definitions.

Definition 3.3. The i-th row permanent of A = (a;j) € M (n, H) is defined as
rperiA = Z (I“'kl aiklik1+1 .. .a,-leli e aik,«ikr+1 .. 'aikr+lrikr’
O’GSn

where left-ordered cycle notation of the permutation o satisfies the conditions (3.1) and
(3.2).

Definition 3.4. The i-th row determinant of A = (a;;) € M (n, H) is defined as

P n—r .. . . . . . . . .
rdet; A = E (—1) iy, Qi gy 41 - - Qi 10 - Vi gy - - - Wiy g1y i
O’GSn

where left-ordered cycle notation of the permutation o satisfies the conditions (3.1) and
(3.2), (since sign(c) = (—=1)""").
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For A = (a;;) € M (n, H) we define n column immanants as well.
Definition 3.5. The j-th column immanant of A = (a;;) € M (n, H) is defined as
ImmyA = Y X(7T) @ i Gisrdin GGy 1, - - Gy 1y Gy
TESH

where right-ordered cycle notation of the permutation T € Sy, is written as follows

T = (ketle - Ikt 1Tk ) -+ - Uatly -+ - Jhpt10k2) (Gl - Tk 41700 d) - (33)

Here the first cycle from the right begins with the index j and other cycles satisfy the fol-
lowing conditions
Tky < Jks < oo <UJker Tkt < Jhitss (3.4)

forallt =2 rands =1,l;.
Consequently we have the following definitions as well.
Definition 3.6. The j-th column permanent of A = (a;;) € M (n, H) is defined as
rper; A = Z Uy G +ir ** Vikpt1dig + QG dny 41y -+ Ly 4130y Yk 5>
TESK

where right-ordered cycle notation of the permutation o satisfies the conditions (3.3) and
(3.4).

Definition 3.7. The j-th column determinant of A = (a;;) € M (n, H) is defined as

rdetjA - E : (_1) a]k,«]k,«ur t 'a]kr+1]kr ey Jki+1y * 'a3k1+13k1 a]klj’
TESK

where right-ordered cycle notation of the permutation o satisfies the conditions (3.3) and
(3.4).

Consider the basic properties of the column and row immanants over H.

Proposition 3.8. (The first theorem about zero of an immanant) If one of the rows (columns)
of A € M (n,H) consists of zeros only, then rImm; A = 0 and cImm; A = 0 for all
i=1,n.

Proof. The proof immediately follows from the definitions. O
Denote by Ha and aH left and right principal ideals of H, respectively.

Proposition 3.9. (The second theorem about zero of an row immanant) Let A = (a;j) €
M (n,H) and ax; € Ha; and a;; € @H, where n(a;) = 0 for k, j = 1, nand for all i # k.
Let a11 € Haq and ass € aiH if k = 1, and ap, € Hay and a1 € apH if k =@ > 1,
where n(ay) = 0. Then rImm;A = 0.
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Proof. Let i # k. Consider an arbitrary monomial of rlmmyA, if ¢ # k,
d= X(O‘)akiaij oAl

where {I,m} C {1,...,n}. Since there exists a; € H such that n(a;) = 0, and ax; € Ha;,
aij € a;H, than OkiGi5 = Oand d = 0.
Let ¢ = k = 1. Then an arbitrary monomial of rImm; A,

d= X(O‘)(Inagg e Al

Since there exists a; € Hsuch thatn(ay) = 0,and a1; € Haq, ass € a1H, then aj1aze =0
and d = 0.
If Kk =4 > 1, then an arbitrary monomial of rlmmy A,

d = x(0)agkaii - - - apm.

Since there exists a;, € H such that n(ay) = 0, and ay, € Hag, a1 € axH, then agrai; =
Oand d = 0. O

Proposition 3.10. (The second theorem about zero of an column immanant) Let A =
(aij) € M (n,H) and a;; € a;H and aj; € Ha;, where n(a;) = 0 for k,j = 1,n and
foralli # k. Let a11 € a1H and aso € Hay if k = 1, and ag, € apH and a1 € Hay, if
k =1 > 1, where n(ay) = 0. Then clImm;A = 0.

Proof. The proof is similar to the proof of the Proposition 3.9. U
The proofs of the next theorems immediately follow from the definitions.

Proposition 3.11. If the i-th row of A = (a;;) € M (n, H) is left-multiplied by b € H, then
rImm; A; (b-a;) =b-rImm; A foralli =1,n.

Proposition 3.12. If the j-th column of A = (a;;) € M (n, H) is right-multiplied by b € H,
then cImm; A j (a j -b) = clmm; A - bforall j = 1,n.

Proposition 3.13. If for A = (a;;) € M (n,H) there exists t € {1, ...,n} such that a;; =
bj +c¢j forall j =1,n, thenforalli=1,n

rImm; A = rImm; A, (b) + rImm; A; (c),
cImm; A = cImm; A (b) 4+ cImm; A; (c),

where b = (b1, ...,by), c = (c1,...,cp).

Proposition 3.14. If for A = (a;;) € M (n, H) there exists t € {1, ...,n} such that a;; =
b; +c; foralli =1,n, thenforall j = 1,n

rImm; A = rImm; A ; (b) + rImm; A ;(c),
clmm; A = cImm; A ; (b) + cImmj;A ;(c),

where b = (by,...,b,)T, c = (c1,...,c0)t.
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Proposition 3.15. If A* is the Hermitian adjoint matrix (conjugate and transpose) of A €
M (n, H), then rImm; A* = cImm; A foralli =1, n.

Particular cases of these properties for the row-column determinants and permanents
are evident.

Remark 3.16. The peculiarity of the column immanant (permanent, determinant) is that,
at the direct calculation, factors of each of the monomials are written from right to left. [

In Lemmas 3.17 and 3.18, we consider the recursive definition of the column and row
determinants. This definition is an analogue of the expansion of a determinant along a row
and a column in commutative case.

Lemma 3.17. Let R;; be the rightij-th cofactor of A = (a;;) € M (n, H), namely

n
rdetiA = Z (I,‘j . R,‘j
j=1

forall i =1,n. Then

= { e () i

rdety, A%, i=3
2, i=1
b= {1, i>1
where the matrix (Az;(a i)) is obtained from A by replacing its j-th column with the i-th
column and then by deleting both the i-th row and column. ]

Lemma 3.18. Let L;; be the left ijth cofactor of entry a;; of matrix A = (a;;) €
M (n, H), namely

n
cdetj A= Z L,;j . (I,;j
=1

forall j = 1,n. Then

Li; = { —edet; (A¥(a;.), i #J

cdety, AT, i=7
_J2, j=1
k_{l, j>1

where the matrix (Af] (a;.)) is obtained from A by replacing its ith row with the jth and
then by deleting both the jth row and column. ]

Remark 3.19. Clearly, an arbitrary monomial of each row or column determinant cor-
responds to a certain monomial of another row or column determinant such that both of
them have the same sign, consist of the same factors and differ only in their ordering. If
the entries of A are commutative, then rdet1 A = ... = rdet,A = cdet; A = ... =
cdet, A. O
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4. An Immanant of a Hermitian Matrix

If A* = A then A € H"*" is called a Hermitian matrix. In this section we consider
the key theorem about row-column immanants of a Hermitian matrix.
The following lemma is needed for the sequel.

Lemma 4.1. Let T, be the sum of all possible products of n factors, each of their are either
h; € H or h; for all i = 1, n, by specifying the ordering in the terms, Ty, = hy - ha - . .. -
hp, +hi -ho-...hp+...4+hi-hg-...-h,. Then T, consists of the 2™ terms and
Tn:t(hl) t(hg) t(hn)

Theorem 4.2. If A € M (n, H) is a Hermitian matrix, then
rlmm;A = ... = rImm, A = clmm; A = ... = cImm, A €F.

Proof. At first we note that if A = (a,;;) € H"*" is Hermitian, then we have a;; € I and
aij = ay; forall i, j =1, n.

We divide the set of monomials of rImm; A for some i € {1, ...,n} into two subsets.
If indices of coefficients of monomials form permutations as products of disjoint cycles
of length 1 and 2, then we include these monomials to the first subset. Other monomials
belong to the second subset. If indices of coefficients form a disjoint cycle of length 1, then
these coefficients are a;; for j € {1,...,n} and a;; € F.

If indices of coefficients form a disjoint cycle of length 2, then these entries are conju-
gated, a;, i, ., = @i, 4y and

Qigipgr " Qiggrin — Viggaip * Vigppaip = n(aik+1ik) eF.

So, all monomials of the first subset take on values in F.
Now we consider some monomial d of the second subset. Assume that its index permu-
tation o forms a direct product of r disjoint cycles. Denote ¢y, := ¢, then

d= X(U)aiklik1+1 Ce aik1+llik1 aiink2+1 Ce aik2+l2ik2 .. 'aikmikm+1 oo X (4 1)
Xaikm+lmikm Ce aik,«ikr+1 .. 'aikr+lrikr = X(O‘)hlhg Ce hm Ce hT,
where hs = a;, iy 4y * -+ Qi iy, Toralls = 1,7, and m € {1,...,r}.If I = 1, then

hs = aiksiks+1aiks+1ik_sz n(aiksikSH) e F. Ifl, = 0, then hy, = Qiy, i, ceF. Ifl;, =0
orls = 1forall s = 1,rin (4.1), then d belongs to the first subset. Let there exists s € I,
such that [; > 2. Then

h

s = Qiggiggpn - Qiggqaging = Qiggqiging - Viggingpr = Viggipgrs = Viggpring -

Denote by o (ix,): = (ik,ik.+1 - - - ik,+1,) @ disjoint cycle of indices of d for some s €
{1,...,r}, then ¢ = oy (i) 02 (ik, ) ...0r (i, ). The disjoint cycle o, (ix,) corresponds
to the factor hs. Then ot (i) = (ig.ik.+1.9ko+1---ik,+1) is the inverse disjoint cycle
and o ! (ix,) corresponds to the factor h,. By the Lemma 4.1, there exist another 2P — 1
monomials for d, (where p = r — p and p is the number of disjoint cycles of length 1 and 2),
such that their index permutations form the direct products of r disjoint cycles either o5 (i, )
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or o; ! (iy,) by specifying their ordering by s from 1 to r. Their cycle notations are left-
ordered according the to the Definition 3.2. These permutations are unique decomposition
of the permutation ¢ including their ordering by s from 1 to r. Suppose C] is the sum of
these 2P — 1 monomials and d, then, by the Lemma 4.1, we obtain

Cr = x(o)at(hy) ... t(h,) €F.

Here o € F is the product of coefficients whose indices form disjoint cycles of length 1 and
2,v, €{1,...,r}forallk =1,p.

Thus for an arbitrary monomial of the second subset of rImm; A, we can find the 2P
monomials such that their sum takes on a value in F. Therefore, rImm; A € F.

Now we prove the equality of all row immanants of A. Consider an arbitrary rImm; A
such that j # ¢ for all j = 1,n. We divide the set of monomials of rImm; A into two
subsets using the same rule as for rImm; A. Monomials of the first subset are products of
entries of the principal diagonal or norms of entries of A. Therefore they take on a value in
F and each monomial of the first subset of rImm; A is equal to a corresponding monomial
of the first subset of rImm; A.

Now consider the monomial d; of the second subset of monomials of rImm; A con-
sisting of coefficients that are equal to the coefficients of d but they are in another order.
Consider all possibilities of the arrangement of coefficients in d.

(i) Suppose that the index permutation ¢’ of its coefficients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their
ordering. Then o’ = o and we have

di = x(o)ahy, ... hy,

where {y, ..., A} = {v1,...,1p}. By the Lemma 4.1, there exist 2” — 1 monomials of the
second subset of rlmm; A such that each of them is equal to a product of p factors either
hsor hg forall s € {u, ..., \}. Hence by the Lemma 4.1, we obtain

Co = x(o)at(hy) ... t(hy) = x(0) at(hy,)... t(h,) = Ci.

(i) Now suppose that in addition to the case (i) the index j is placed inside some disjoint
cycle of the index permutation o of d, e.g., j € {ik,,4+1; -+ Uyt ;- DENOtE J = G 1q.
Considering the above said and o, 41 (ik,,+1) = Tk, +q(ikm+q), We have 0’ = 0. Then d;
is represented as follows:

dl = X(U)aikm+qikm+q+1 e aikm‘FZmikm aikmikm“‘l cee X
Xaikm+q—1ikm+qaikuiku+1 N aikuj‘luiku N aik}\ih+1 . aikkﬁ-l)\ik)\ = (42)
= x(o)ahmhy ... hy,
where {m, i, ..., A} = {v1,...,1,}. Except for h,,, each factor of d; in (4.2) corresponds

to the equal factor of d in (4.1). By the rearrangement property of the trace, we have
t(hy) = t(hy,). Hence by the Lemma 4.1 and by analogy to the previous case, we obtain,

Oy = x(0)a t(hm) t(hy) - .. t(hy) =
= x(0) @ t(hy,) .. t(hm) ... t(hy,) = Cy.
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(ii1) If in addition to the case (i) the index i is placed inside some disjoint cycles of the index
permutation of d;, then we apply the rearrangement property of the trace to this cycle. As
in the previous cases we find 2” monomials of the second subset of rImm; A such that by
Lemma 4.1 their sum is equal to the sum of the corresponding 27 monomials of rImm;A.
Clearly, we obtain the same conclusion at association of all previous cases, then we apply
twice the rearrangement property of the trace.

Thus, in any case each sum of 2P corresponding monomials of the second subset of
rImm; A is equal to the sum of 2” monomials of rImm; A. Here p is the number of
disjoint cycles of length more than 2. Therefore, for all 7, j = 1, n we have

rImm; A = rImm; A € F.
The equality cImm; A = rImm; A for all i = 1, n is proved similarly. O

Remark 4.3. If A € H"™" is skew-hermitian (A = —A¥*), then the Theorem 4.2 is not
meaningful. It follows from the next example.

Example 4.4. Consider the following skew-hermitian matrix over the split quaternions of

James Cockle Hg(—31),
G 2+
A= < -2+ -k > '

rlmm; A = —jk — (2+14)(—2+1i) =5+,
rlmmg A = —(=2+4)(2+14) —kj =5 — 1,

then rImm; A # rImms A.

Since

Since the Theorem 4.2, we have the following definition.

Definition 4.5. Since all column and row immanants of a Hermitian matrix over H are
equal, we can define the immanant (permanent, determinant) of a Hermitian matrix A €
H"*". By definition, we put for all i = 1,n

Imm A :=rImm; A = cImm; A,
per A := rper; A = cper; A,
det A :=rdet; A = cdet; A.

4.1. Cramer’s Rule for System of Linear Equations over a Quaternion
Division Algebra

In this subsection we shall be consider H as a quaternion division algebra especially
since quasideterminants are defined over the skew field as well.

Properties of the determinant of a Hermitian matrix is completely explored in [7, 8] by
its row and column determinants. Among all, consider the following.

Theorem 4.6. If the i-th row of the Hermitian matrix A € M (n, H) is replaced with a left
linear combination of its other rows

a; =ca; .+ ...+ cra;, .
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where ¢; € H foralll =1,k and {i,i;} C {1,...,n}, thenforalli=1n
CdetiAi.(Cl 3K : T —|—...—|—ck-a,;k.) :rdet,;A,;,(cl X: VI —|—...—|—ck-a,;k.) =0.

Theorem 4.7. If the j-th column of a Hermitian matrix A € M (n, H) is replaced with a
right linear combination of its other columns

aj=ajc+...+aj .c

where c; € H foralll =1,k and {j,5:} C {1,...,n}, thenforallj =1,n
cdetjA.j (a.jl 1+ ... ay, 'Ck) :rdetjA,j (a.jl ‘c1+ ...t ay, 'Ck) =0.

The following theorem on the determinantal representation of an inverse matrix of Her-
mitian follows immediately from these properties.

Theorem 4.8. There exist a unique right inverse matrix (RA)™! and a unique left inverse
matrix (LA)™! of a nonsingular Hermitian matrix A € M (n, H), (det A # 0), where
(RA)™' = (LA)™! =: AL, Right inverse and left inverse matrices has following deter-
minantal representation

Ri1 Ry R
_ 1 Ri2 Rao Ry
RA) =
( ) det A cee ’
Rln R2n Rnn
L1 Lo L1
_ 1 Lis Log -+ Ly
LA) =
( ) det A ’
Lin Lop -+ Lpy

where R;j, L;; are right and left ij-th cofactors of A, respectively, for all i, j = 1, n.

To obtain the determinantal representation for an arbitrary inverse matrix over a quater-
nion division algebra H, we consider the right AA* and left A* A corresponding Hermitian
matrices.

Theorem 4.9 ([7]). If an arbitrary column of A € H™*" is a right linear combination of
its other columns, or an arbitrary row of A* is a left linear combination of its other rows,
then det A*A = 0.

Since principal submatrices of a Hermitian matrix are also Hermitian, then the basis
principal minor may be defined in this noncommutative case as a principal nonzero minor
of a maximal order. We also can introduce the notion of the rank of a Hermitian matrix by
principal minors, as a maximal order of a principal nonzero minor. The following theorem
establishes the correspondence between the rank by principal minors of a Hermitian matrix
and the rank of the corresponding matrix that are defined as a maximum number of right-
linearly independent columns or left-linearly independent rows, which form a basis.

Theorem 4.10 ([7]). A rank by principal minors of a Hermitian matrix A* A is equal to its
rank and a rank of A € H™*",
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Theorem 4.11 ([7]). If A € H™*", then an arbitrary column of A is a right linear com-
bination of its basic columns or arbitrary row of A is a left linear combination of its basic
rows.

It implies a criterion for the singularity of a corresponding Hermitian matrix.

Theorem 4.12 ([7]). The right linearly independence of columns of A € H™*"™ or the left
linearly independence of rows of A* is the necessary and sufficient condition for

det A*"A #£0
Theorem 4.13 ([7]). If A € M (n, H), then det AA* = det A*A.

In the following example, we shall prove the Theorem 4.13 for the case n = 2.

Example 4.14. Consider the matrix A = <a11 a12> , then A* = <a11 a21> . Respec-

a1 Q22 a2 a2

tively, we have
AA* — aiiail + ajea12  a11021 + a12G22
- —_— — —_— — |
a21a11 + ag2012 21021 + A22G22

A*A — aiiail + ag1a21  Ga11012 + 421622
a12a11 + @22a21 Q12012 + A22G22

According to thw Theorem 4.2 and the Definition 4.5, we have

det AA* = rdet; AA™,
det A*A = rdet]A*A

According to the Lemma 3.17

det AA* = (AA*)11(AA%)9 — (AA™)12(AAY)y
= (a11@11 + a12a12)(a21G21 + azda2)
—(a11G21 + a12022) (a21G11 + azeaiz)
= 111011021021 + A12012a21021
+a11G11a22022 + a12G12022022 ; 4.3)
—@11021021011 — 012022021011
—@11021022012 — 012022022012
= 112012021021 + A11011A22022
—a12G22021G1] — (11021022012
det A*A = (A*A)11(A*A)o — (A*A)12(A*A)
= (@11a11 + G21021) (A12012 + G22022)
—(@11a12 + G21a22)(@12011 + G22a21)
= 011011012012 + 021021012012
+ai1a11a22a22 + U21021022022 . 4.4)
—G11012012011 — 021022012011
—G11012022021 — 021022022021
= (21021012012 + 411011022022
—G21022012011 — 011612022021
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Positive terms in equations (4.3), (4.4) are real numbers and they obviously coincide. To
prove equation

(12022021011 + 11021022012 = (21022012011 + 011Q12022021 (45)

we use the rearrangement property of the trace of elements of the quaternion algebra,
t(pq) = t(gp). Indeed,

12022021011 + (11021022012 = (12022021011 + A12G22021a11 = t(a12G22a21G11),
21022012011 + G11012G22021 = G11012022021 + G11012022a21 = t(@11012022021)
Then by the rearrangement property of the trace, we obtain (4.5).

According to the Theorem 4.13, we introduce the concept of double determinant. For
the first time this concept was introduced by L. Chen ([18]).

Definition 4.15. The determinant of corresponding Hermitian matrices is called the double
determinant of A € M (n,H), i.e, ddetA :=det (A*A) = det (AA*).

If H is the Hamilton’s quaternion skew field H, then the following theorem establishes
the validity of Axiom 1 for the double determinant.

Theorem 4.16. If {A, B} C M (n, H), then ddet (A - B) = ddetA - ddetB.

Unfortunately, if a non-Hermitian matrix is not full rank, then nothing can be said about
singularity of its row and column determinant. We show it in the following example.

Example 4.17. Consider the matrix

() 2),

Its second row is obtained from the first row by left-multiplying by k. Then, by the Theorem
4.12, ddet A = 0. Indeed,

wa _ (0 =3\ (¢ J\_ (2 -2k
s ) 2 2
Then ddetA = 4 + 4k? = 0. However

cdet1 A = cdetoA = rdet; A = rdetpA = —i% — j? = 2.

At the same time rank A = 1, that corresponds to the Theorem 4.10.

The correspondence between the double determinant and the noncommutative determi-
nants of Moore, Stady and Dieudonné are as follows,

ddetA = Mdet (A*A) = SdetA = Ddet?A.
Definition 4.18. Let ddetA = cdet; (A*A) = > L;j - a;j for j = 1,n. Then L;; is
called the left double ij-th cofactor of A € M (n, H).

Complimentary Contributor Copy



316 Aleks Kleyn and Ivan I. Kyrchei

Definition 4.19. Let ddet A = rdet; (AA*) =" a;;-R;j fori = 1,n. Then R;; is called
J
the right double ij-th cofactor of A € M (n, H).

Theorem 4.20. The necessary and sufficient condition of invertibility of a matrix A =
(a;j) € M(n, H) is ddetA # 0. Then A~ = (LA) ™" = (RA) ™", where

Ly Loy ... L
1 L L .. L
LA) ' = (A*A) 1 A* = 12 22 n2 4.
(LA)" = (A°A) ddetA | ... ... . (4.6)
Lln L2n Lnn
Riyp Rop ... Ry
_ 1 R R ..o R
AVl A (AAS)L = 12 22 n2 47
(BA) (AAY) " =qqear | .0 . *7)
Ri, Ro, ... R,

and Lij = cdetj(A*A).j (af"i), R ij = rdet,;(AA*),;. (a}") fOI’ all ’i,j = 1, n.

Remark 4.21. In the Theorem 4.20, the inverse matrix A~' of an arbitrary matrix A €
M(n, H) under the assumption of ddet A # 0 is represented by the analog of the classical
adjoint matrix. If we denote this analog of the adjoint matrix over H by Adj[[A]], then the

next formula is valid over H.:

L Adi[[A]
A= ddetA -

An obvious consequence of a determinantal representation of the inverse matrix by the
classical adjoint matrix is Cramer’s rule.

Theorem 4.22. Let

be a right system of linear equations with a matrix of coefficients A € M(n, H), a column
of constantsy = (y1, . . .,yn)T € H™!, and a column of unknowns x = (1, . . .,xn)T. If
ddet A # 0, then (4.8) has a unique solution that has represented as follows,

o cdet;(A*A) ; (f)
I ddet A

3

, Vi=1, 4.9)

where f = A*y.

Theorem 4.23. Let
x-A=y (4.10)

be a left system of linear equations with a matrix of coefficients A € M(n, H), a column
of constants y = (y1,...,yn) € H' " and a column of unknowns x = (x1,...,x,). If
ddet A # 0, then (4.10) has a unique solution that has represented as follows,

o rdet; (AA¥), (2z)
i ddetA

Vi=1,n 4.11)

where z = yA™.
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Equations (4.9) and (4.11) are the obvious and natural generalizations of Cramer’s rule
for systems of linear equations over a quaternion division algebra. As follows from the
Theorem 4.8, the closer analog to Cramer’s rule can be obtained in the following specific
cases.

Theorem 4.24. Let A € M(n,H) be Hermitian in (4.8). Then the solution of (4.8) has
represented by the equation,
cdet;A ; (y)
T, = —2 27
J det A
Theorem 4.25. Let A € M(n, H) be Hermitian in (4.10). Then the solution of (4.10) has
represented as follows,

Vi =1,n.

rdet; A, (y)
€rT, = ————
! det A 7
An application of the column-row determinants in the theory of generalized inverse

matrices over the quaternion skew field recently has been received in [26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38].

Vi=1,n.

5. Quasideterminants over a Quaternion Division Algebra
Theorem 5.1. Suppose a matrix

ai] ... Qinp
A=

Apl ... Qpp

with entries from a quaternion division algebra has an inverse A=1.> Then a minor of the
inverse matrix satisfies the following equation, provided that the inverse matrices exist

(A Y™ = Ay — A (A7) AT 5.1
Proof. Definition of an inverse matrix leads to the system of linear equations
AT(ATH ]+ AT (AT =0 (5.2)
AJA Y+ A Ay =1 (5.3)
where I is a unit matrix. We multiply (5.2) by (A7/ )_1
(AD+ AT TIAG AT, =0 (5:4)
Now we can substitute (5.4) into (5.3)
Ajr(A ™ — AFATD) AL AT =1 (5.5

(5.1) follows from (5.5). O

2This statement and its proof are based on statement 1.2.1 from [17] (page 8) for matrix over free division
ring.
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Corollary 5.2. Suppose a matrix A has the inverse matrix. Then elements of the inverse
matrix satisfy to the equation

(A1) ™" = aj — Aj(AT) 1A, (5.6)

Example 5.3. Consider a matrix

According to (5.6)

(A N1 = (a11 — a12(ae) ™" asn) ™ (5.7)
(A1 = (a1 — asa(a12) ™' ain) ™ (5.8)
(AN 12 = (a12 — ar1(a21) " age) ™ (5.9)
(A )92 = (az2 — az1(a1;) * agz) ™ (5.10)
We call a matrix
HA = (HA)ij) = ((a50) ") (5.11)

a Hadamard inverse of> A.
Definition 5.4. The (ji)-quasideterminant of A is formal expression
Al = (HA™Y) = (A7) ™ (5.12)

We consider the (ji)-quasideterminant as an element of the matrix |A|, which is called a
quasideterminant.

Theorem 5.5. Expression for the (ji)-quasideterminant has form

|Alji = aji — A (AT LAY (5.13)

|Alj: = aji — Aj H|AT| A, (5.14)

Proof. The statement follows from (5.6) and (5.12). O
Example 5.6. Let

A= <(1) (1)> (5.15)

It is clear from (5.7) and (5.10) that (A=Y = 1 and (A~ ')y = 1. However
expression for (A=1)91 and (A~1)12 cannot be defined from (5.8) and (5.9) since (a1 —
aga(a12) "t a11) ™t = (a12 —a11(ag1) 7t age) "t = 0. We can transform these expressions.
For instance

a1 — &22(&12) ! 0011)_1

&11((&11) a1z — (a21) " az))
(a21) ™ ar1(ai(arn) " a1z — ag))

aii(azi(ain)” Yagg — &22))_1 a1

(A2

-1

-1

=
= (
=
= (

3See also page 4 in paper [16].
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It follows immediately that (A~')o1 = 0. In the same manner we can find that (A~1)15 =

0. ThEI efOl e,
= .

O
From the Example 5.6 we see that we cannot always use Equation (5.6) to find elements

of the inverse matrix and we need more transformations to solve this problem. From the
theorem 4.6.3 in the paper [9], it follows that if

ai] ... Qip
rank | ... ... .. <n-2

Apl ... Qpp

then |A|;; for all ¢, j = 1, n is not defined. From this, it follows that although a quasideter-
minant is a powerful tool, use of a determinant is a major advantage.

Theorem 5.7. Let a matrix A have an inverse. Then for any matrices B and C equation

B=C (5.17)
follows from the equation
BA =CA (5.18)
Proof. Equation (5.17) follows from (5.18) if we multiply both parts of (5.18) over AL
O
Theorem 5.8. The solution of a nonsingular system of linear equations
Az =5b (5.19)
is determined uniquely and can be presented in either form*
z=A""b (5.20)
x ="H|A|b (5.21)

Proof. Multiplying both sides of (5.19) from left by A~! we get (5.20). Using the Defini-
tion 5.4, we get (5.21). Since the Theorem 5.7, the solution is unique. O

6. Relation of Row-Column Determinants
with Quasideterminants

Theorem 6.1. If A € M(n, H) is an invertible matrix, then, for arbitrary p,q = 1,n, we
have the following representation of the pq-quasideterminant

ddetA - cdety(A*A) 4 (af“p)
| A ‘pq: * * )
n(cdety(A*A) 4 (a.p))

6.1

“See similar statement in the theorem 1.6.1 in the paper [17] on pagen 19.
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ddetA - rdet,(AA*),. (a;.)
n(rdet,(AA*),. (aq.))

| A [pg= 6.2)

Proof. Let A~! = (b;;) to A € M(n, H). Equation (5.12) reveals the relationship between
a quasideterminant | A |, , of A € M(n,H) and elements of the inverse matrix A~! =

(b,’j), namely )
| A |pg= bap

for all p,q = 1,n. At the same time, the theory of row and column determinants (the
theorem 4.20) gives us representation of the inverse matrix through its left (4.6) and right
(4.7) double cofactors. Thus, accordingly, we obtain

_ . L -l
A = bl = Lyq 1 _ cdety(A*A) 4 (A.p) 63)
T\ ddetA ddetA ! ’
_ . L -l
i tap  \ ddet A ddetA ' :

Since ddetA # 0 € IF, then 3(ddet A)~! € F. It follows that

. 1 cdetq(A*A).q(Af“p)
Aot AA). (A5) = et (AA) , (A%,)) ©

_ rdet,(AA*), (A%)
rdet,(AA®), (A*) ' = P -/ (6.6)
P p. (A7) n(rdet,(AA*), (A%))
Substituting (6.5) into (6.3), and (6.6) into (6.4), we accordingly obtain (6.1) and (6.2).
We proved the theorem. O

Equation (6.1) gives an explicit representation of a quasideterminant | A |, , of A €
M(n, H) for all p, ¢ = 1, n by the column determinant of its corresponding left Hermitian
matrix A*A, and (6.2) does by the row determinant of its corresponding right Hermitian
matrix AA*,

Example 6.2. Consider a matrix

A <a11 a12>
a1 Q22
According to (5.13)

Al = <a11 - @12((122)_1 ag1 aip — an(am)j a22> 67)
a1 — agz(a12) ™ a1 a2 — azi(ai1) " a2

Our goal is to find this quasideterminant using the Theorem 6.1. It is evident that

At — <a—n @_21> AFA — <n(an) +n(az) &_11&12-1-&_21&22) .

a2 a2 G12a11 + G22a21 n(aiz) + n(age)
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Calculate the necessary determinants

ddetA = rdet;(A*A)
= (n(a11) +n(az1)) - (n(ar2) + n(asz))
—(@11a12 + @zrag2) - (@12011 + Gzaz1)
= n(ai1)n(a12) + n(a11)n(age) + n(ag1)n(aiz) + n(azi)n(azs)
—G11012012011 — 011612022021 — 021022012011 — (21022022021
=n(ai1)n(a2) + n(azi)n(ai2) — (@r1012G22021 + ar1a12022021)
= n(ai1)n(a2) + n(ag)n(ai2) — t(arrai2a2a21)

G21  @11a12 + G21022
cdetq ( ).1(a%) = cdety <a_22 n(ai2) + n(@zz))

= n(a12)az1 + n(aze)a1 — a11a12G22 — G21022022
= n(a12)d21 — G11012022.

Then

cdet1(A*A) 1(a%) = n(ai2)az1 — az@iza11,

n(cdet (A*A) 1(a%)) = cdet1(A*A) j(a%) - cdet; (A*A) 1(a%)
= (n(a12)az1 — azaizarr) - (n(aiz)azr — Girai2a22)
= n%(a12)n(az1) — n(ai2)asnaiairass
—n(a12)a22612011021 + A22012011011012022
=n(ai2)(n(a12)n(az) — t(arai2a22a21) + n(azr)n(a2))

= n(aj2)ddetA.
Following (6.1), we obtain
ddet A
Aly = det1 (A*A *
‘ ‘21 n(Cdetl(A*A),l(aB))C e 1( )~1(a.2)
ddet A
= ———cdet1(A*A *
n((ilg)ddetAC et )a(2s)
= -cdet1(A*A) 1 (a%) 638)
n(alg) :
_ - (n(a12)az1 — ageaizaii)
n(a1) 12)021 22012011

=ag] — &22(&12)_1&11-

The last expression in (6.8) coincides with the expression |A |21 in (6.7). O

7. Conclusion

In the chapter we consider two approaches to define a noncommutative determinant,
row-column determinants and quasideterminants. These approaches of studying of a matrix
with entryes from non commutative division ring have their own field of applications.

The theory of the row and column determinants as an extension of the classical defi-
nition of determinant has been elaborated for matrices over a quaternion division algebra.
It has applications in the theories of matrix equations and of generalized inverse matrices
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over the quaternion skew field. Now it is in development for matrices over a split quaternion
algebra. In the chapter we have extended the concepts of an immanant, a permanent and a
determinant to a split quaternion algebra and have established their basic properties.

Quasideterminants of Gelfand-Retax are rational matrix functions that requires the in-
vertibility of certain submatrices. Now they are widely used. Though we can use quaside-
terminant in any division ring,’ row-column determinant is more attractive to find solution
of system of linear equations when division ring has conjugation.

In the chapter we have derived relations of row-column determinants with quasideter-
minants of a matrix over a quaternion division algebra. The use of equations (6.1) and (6.2)
allows us direct calculation of quasideterminants. It already gives significance in establish-
ing these relations.
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