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PREFACE

This book presents original studies on the leading edge of linear algebra. Each chap-

ter has been carefully selected in an attempt to present substantial research results across a

broad spectrum. The main goal of Chapter One is to define and investigate the restricted

generalized inverses corresponding to minimization of constrained quadratic form. As

stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descrip-

tor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A

review of the most interesting properties of the Projective Equivalence and the Extended

Hermite Equivalence classes is presented in the chapter. New determinantal representa-

tions of generalized inverse matrices based on their limit representations are introduced in

Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer’s rules for the

least squares solution with the minimum norm and for the Drazin inverse solution of sin-

gular linear systems have been obtained in the chapter. In Chapter Four, a very interesting

application of linear algebra of commutative rings to systems theory, is explored. Chap-

ter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic

matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of

triangular matrices (tables) is introduced. The main ”characters” of the chapter are special

triangular tables (which will be called triangular matrices) and their functions paradetermi-

nants and parapermanents. The aim of Chapter Seven is to present the latest developments

in iterative methods for solving linear matrix equations. The problems of existence of com-

mon eigenvectors and simultaneous triangularization of a pair of matrices over a principal

ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two

approaches to define a noncommutative determinant (a determinant of a matrix with non-

commutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example

of how the methods of linear algebra are used in natural sciences, particularly in chemistry.

In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix,

all columns add to zero, all the diagonal elements are non-positive and all the other ma-

trix entries are non-negative. As a result of this particular structure, the Gershgorin Circles

Theorem can be applied to show that all the eigenvalues are negative or zero.

Minimization of a quadratic form 〈x, Tx〉 + 〈p, x〉 + a under constraints defined by

a linear system is a common optimization problem. In Chapter 1, it is assumed that the
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operator T is symmetric positive definite or positive semidefinite. Several extensions to

different sets of linear matrix constraints are investigated. Solutions of this problem may

be given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several

new classes of generalized inverses are defined minimizing the seminorm defined by the

quadratic forms, depending on the matrix equation that is used as a constraint.

A number of possibilities for further investigation are considered.

In systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-

Algebraic) systems are intimately related to the matrix pencil theory. Actually, a large

number of systems are reduced to the study of differential (difference) systems S (F,G) of

the form:

S (F,G) : Fẋ(t) = Gx(t) (or the dual Fx = Gẋ(t)) ,

and

S (F,G) : Fxk+1 = Gxk (or the dual Fxk = Gxk+1) , F, G ∈ C
m×n

and their properties can be characterized by the homogeneous pencil sF − ŝG. An essential

problem in matrix pencil theory is the study of invariants of sF−ŝG under the bilinear strict

equivalence. This problem is equivalent to the study of complete Projective Equivalence

(PE), EP , defined on the set Cr of complex homogeneous binary polynomials of fixed

homogeneous degree r. For a f (s, ŝ) ∈ Cr, the study of invariants of the PE class EP is

reduced to a study of invariants of matrices of the set C
k×2 (for k > 3 with all 2×2-minors

non-zero) under the Extended Hermite Equivalence (EHE), Erh. In Chapter 2, the authors

present a review of the most interesting properties of the PE and the EHE classes. Moreover,

the appropriate projective transformation d ∈ RGL (1,C/R) is provided analytically ([1]).

By a generalized inverse of a given matrix, the authors mean a matrix that exists for a

larger class of matrices than the nonsingular matrices, that has some of the properties of the

usual inverse, and that agrees with inverse when given matrix happens to be nonsingular. In

theory, there are many different generalized inverses that exist. The authors shall consider

the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin inverses.

New determinantal representations of these generalized inverse based on their limit rep-

resentations are introduced in Chapter 3. Application of this new method allows us to obtain

analogues classical adjoint matrix. Using the obtained analogues of the adjoint matrix, the

authors get Cramer’s rules for the least squares solution with the minimum norm and for the

Drazin inverse solution of singular linear systems. Cramer’s rules for the minimum norm

least squares solutions and the Drazin inverse solutions of the matrix equations AX = D,

XB = D and AXB = D are also obtained, where A, B can be singular matrices of

appropriate size. Finally, the authors derive determinantal representations of solutions of

the differential matrix equations, X′ + AX = B and X
′ + XA = B, where the matrix A

is singular.

Many physical systems in science and engineering can be described at time t in terms

of an n-dimensional state vector x(t) and an m-dimensional input vector u(t), governed by

an evolution equation of the form x′(t) = A · x(t) + B · u(t), if the time is continuous, or

x(t+1) = A ·x(t)+B ·u(t) in the discrete case. Thus, the system is completely described

by the pair of matrices (A,B) of sizes n× n and n×m respectively.

In two instances feedback is used to modify the structure of a given system (A,B): first,

A can be replaced by A + BF , with some characteristic polynomial that ensures stability
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of the new system (A+BF,B); and second, combining changes of bases with a feedback

action A 7→ A+ BF one obtains an equivalent system with a simpler structure.

Given a system (A,B), let (A,B) denote the set of states reachable at finite time when

starting with initial condition x(0) = 0 and varying u(t), i.e., (A,B) is the right image of

the matrix [B|AB|A2B| · · · ]. Also, let Pols(A,B) denote the set of characteristic polyno-

mials of all possible matrices A+BF , as F varies.

Classically, (A,B) have their entries in the field of real or complex numbers, but the

concept of discrete-time system is generalized to matrix pairs with coefficients in an arbi-

trary commutative ring R. Therefore, techniques from Linear Algebra over commutative

rings are needed.

In Chapter 4, the following problems are studied and solved when R is a commutative

von Neumann regular ring:

• A canonical form is obtained for the feedback equivalence of systems (combination

of basis changes with a feedback action).

• Given a system (A,B), it is proved that there exist a matrix F and a vector u such

that the single-input system (A + BF,Bu) has the same reachable states and the

same assignable polynomials as the original system, i.e. (A + BF,Bu) = (A,B)

and Pols(A+BF,Bu) = Pols(A,B).

Chapter 5 gives a comprehensive investigation to behaviors of a general Hermitian

quadratic matrix-valued function

φ(X) = (AXB +C )M(AXB +C)∗ +D

by using ranks and inertias of matrices. The author first establishes a group of analytical

formulas for calculating the global maximal and minimal ranks and inertias of φ(X). Based

on the formulas, the author derives necessary and sufficient conditions for φ(X) to be a

positive definite, positive semi-definite, negative definite, negative semi-definite function,

respectively, and then solves two optimization problems of finding two matrices X̂ or X̃
such that φ(X) < φ(X̂) and φ(X) 4 φ(X̃) hold for all X , respectively. As extensions,

the author considers definiteness and optimization problems in the Löwner sense of the

following two types of multiple Hermitian quadratic matrix-valued function

φ(X1, . . . , Xk ) =

(
k∑

i=1

AiXiBi +C

)
M

(
k∑

i=1

AiXiBi +C

)∗
+D,

ψ(X1, . . . , Xk ) =

k∑

i=1

(AiXiBi +Ci )Mi(AiXiBi +Ci )∗ +D.

Some open problems on algebraic properties of these matrix-valued functions are men-

tioned at the end of Chapter 5.

In Chapter 6, the author considers elements of linear algebra based on triangular tables

with entries in some number field and their functions, analogical to the classical notions of

a matrix, determinant and permanent. Some properties are investigated and applications in

various areas of mathematics are given.
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The aim of Chapter 7 is to present the latest developments in iterative methods for solv-

ing linear matrix equations. The iterative methods are obtained by extending the methods

presented to solve the linear system Ax = b. Numerical examples are investigated to con-

firm the efficiency of the methods.

The problems of existence of common eigenvectors and simultaneous triangularization

of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are

investigated in Chapter 8. The necessary and sufficient conditions of simultaneous trian-

gularization of a pair of matrices with quadratic minimal polynomials are obtained. As a

result, the approach offered provides the necessary and sufficient conditions of simultane-

ous triangularization of pairs of idempotent matrices and pairs of involutory matrices over

a principal ideal domain.

Since product of quaternions is noncommutative, there is a problem how to determine

a determinant of a matrix with noncommutative elements (it’s called a noncommutative de-

terminant). The authors consider two approaches to define a noncommutative determinant.

Primarily, there are row – column determinants that are an extension of the classical def-

inition of the determinant; however, the authors assume predetermined order of elements

in each of the terms of the determinant. In Chapter 9, the authors extend the concept of

an immanant (permanent, determinant) to a split quaternion algebra using methods of the

theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on these

properties, analogs of the classical adjont matrix over a quaternion skew field have been

obtained. As a result, the authors have a solution of a system of linear equations over a

quaternion division algebra according to Cramer’s rule by using row–column determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix inversion.

By using quasideterminants, solving of a system of linear equations over a quaternion divi-

sion algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quasidetermi-

nants is that the authors have not one determinant of a quadratic matrix of order n with

noncommutative entries, but certain set (there are n2 quasideterminants, n row determi-

nants, and n column determinants). The authors have obtained a relation of row-column

determinants with quasideterminants of a matrix over a quaternion division algebra.

First order chemical reaction mechanisms are modeled through Ordinary Differential

Equations (O.D.E.) systems of the form: , being the chemical species concentrations vector,

its time derivative, and the associated system matrix.

A typical example of these reactions, which involves two species, is the Mutarotation

of Glucose, which has a corresponding matrix with a null eigenvalue whereas the other one

is negative.

A very simple example with three chemical compoundsis grape juice, when it is con-

verted into wine and then transformed into vinegar. A more complicated example,also

involving three species, is the adsorption of Carbon Dioxide over Platinum surfaces. Al-

though, in these examples the chemical mechanisms are very different, in both cases the

O.D.E. system matrix has two negative eigenvalues and the other one is zero. Consequently,

in all these cases that involve two or three chemical species, solutions show a weak stability

(i.e., they are stable but not asymptotically). This fact implies that small errors due to mea-

surements in the initial concentrations will remain bounded, but they do not tend to vanish
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as the reaction proceeds.

In order to know if these results can be extended or not to other chemical mechanisms,

a possible general result is studied through an inverse modeling approach, like in previous

papers. For this purpose, theoretical mechanisms involving two or more species are pro-

posed and a general type of matrices - so-called First Order Chemical Kinetics Mechanisms

(F.O.C.K.M.) matrices - is studied from the eigenvalues and eigenvectors view point.

Chapter 10 shows that in an F.O.C.K.M. matrix all columns add to zero, all the diagonal

elements are non-positive and all the other matrix entries are non-negative. Because of this

particular structure, the Gershgorin Circles Theorem can be applied to show that all the

eigenvalues are negative or zero. Moreover, it can be proved that in the case of the null

eigenvalues - under certain conditions - algebraic and geometric multiplicities give the same

number.

As an application of these results, several conclusions about the stability of the O.D.E.

solutions are obtained for these chemical reactions, and its consequences on the propagation

of concentrations and/or surface concentration measurement errors, are analyzed.
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Chapter 3

CRAMER’S RULE

FOR GENERALIZED INVERSE SOLUTIONS

Ivan I. Kyrchei∗

Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics, Lviv, Ukraine

Abstract

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger

class of matrices than the nonsingular matrices, that has some of the properties of the

usual inverse, and that agrees with inverse when given matrix happens to be nonsin-

gular. In theory, there are many different generalized inverses that exist. We shall

consider the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin

inverses.

New determinantal representations of these generalized inverse based on their limit

representations are introduced in this chapter. Application of this new method allows

us to obtain analogues classical adjoint matrix. Using the obtained analogues of the

adjoint matrix, we get Cramer’s rules for the least squares solution with the minimum

norm and for the Drazin inverse solution of singular linear systems. Cramer’s rules

for the minimum norm least squares solutions and the Drazin inverse solutions of the

matrix equations AX = D, XB = D and AXB = D are also obtained, where

A, B can be singular matrices of appropriate size. Finally, we derive determinantal

representations of solutions of the differential matrix equations, X′ + AX = B and

X
′ + XA = B, where the matrix A is singular.

Keywords: generalized inverse; Drazin inverse; weighted Drazin inverse; Moore-Penrose

inverse; weighted Moore-Penrose inverse; system of linear equations; Cramer’s Rule; ma-

trix equation; generalized inverse solution; least squares solution; Drazin inverse solution;

differential matrix equation

AMS Subject Classification: 15A09; 15A24

∗E-mail address: kyrchei@online.ua
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1. Preface

It’s well-known in linear algebra, an n-by-n square matrix A is called invertible (also

nonsingular or nondegenerate) if there exists an n-by-n square matrix X such that

AX = XA = In.

If this is the case, then the matrix X is uniquely determined by A and is called the inverse

of A, denoted by A−1.

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger

class of matrices than the nonsingular matrices, that has some of the properties of the usual

inverse, and that agrees with inverse when given matrix happens to be nonsingular.

For any matrix A ∈ Cm×n consider the following equations in X:

AXA = A; (1.1)

XAX = X; (1.2)

(AX)∗ = AX; (1.3)

(XA)∗ = XA. (1.4)

and if m = n, also

AX = AX; (1.5)

Ak+1X = Ak. (1.6)

For a sequence G of {1, 2, 3, 4, 5} the set of matrices obeying the equations represented in

G is denoted by A{G}. A matrix from A{G} is called an G-inverse of A and denoted by

A(G).

Consider some principal cases.

If X satisfies all the equations (1.1)-(1.4) is said to be the Moore-Penrose inverse of

A and denote A+ = A(1,2,3,4). The MoorePenrose inverse was independently described

by E. H. Moore [1] in 1920, Arne Bjerhammar [2] in 1951 and Roger Penrose [3] in 1955.

R. Penrose introduced the characteristic equations (1.1)-(1.4).

If det A 6= 0, then A+ = A−1.

The group inverse Ag is the unique A(1,2,5) inverse of A, and exists if and only if

Ind A = min{k : rankAk+1 = rankAk} = 1.

A matrix X = AD is said to be the Drazin inverse of A if (1.6) (for some positive

integer k), (1.2) and (1.5) are satisfied, where k = Ind A. It is named after Michael

P. Drazin [4]. In particular, when IndA = 1, then the matrix X is the group inverse,

X = Ag. If IndA = 0, then A is nonsingular, and AD ≡ A−1.

Let Hermitian positive definite matrices M and N of order m and n, respectively, be

given. For any matrix A ∈ C
m×n, the weighted Moore-Penrose inverse of A is the unique

solution X = A+
M,N of the matrix equations (1.1) and (1.2) and the following equations in

X [5]:

(3M) (MAX)∗ = MAX; (4N ) (NXA)∗ = NXA.

In particular, when M = Im and N = In, the matrix X satisfying the equations (1.1), (1.2),

(3M), (4N) is the Moore-Penrose inverse A+.
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Cramer’s Rule for Generalized Inverse Solutions 81

The weighted Drazin inverse is being considered as well.

To determine the inverse and to give its analytic solution, we calculate a matrix of co-

factors, known as an adjugate matrix or a classical adjoint matrix. The classical adjoint of

A, denote Adj[A], is the transpose of the cofactor matrix, then A−1 = Adj[A]
|A| . Representa-

tion an inverse matrix by its classical adjoint matrix also plays a key role for Cramer’s rule

of systems of linear equations or matrices equations.

Obviously, the important question is the following: what are the analogues for the ad-

joint matrix of generalized inverses and, consequently, for Cramer’s rule of generalized

inverse solutions of matrix equations?

This is the main goal of the chapter.

In this chapter we shall adopt the following notation. Let Cm×n be the set of m by n

matrices with complex entries, C
m×n
r be a subset of C

m×n in which any matrix has rank r,

Im be the identity matrix of order m, and ‖.‖ be the Frobenius norm of a matrix.

Denote by a.j and ai. the jth column and the ith row of A ∈ C
m×n, respectively. Then

a∗.j and a∗i. denote the jth column and the ith row of a conjugate and transpose matrix A∗ as

well. Let A.j (b) denote the matrix obtained from A by replacing its jth column with the

vector b, and by Ai. (b) denote the matrix obtained from A by replacing its ith row with

b.

Let α := {α1, . . . , αk} ⊆ {1, . . . , m} and β := {β1, . . . , βk} ⊆ {1, . . . , n} be subsets

of the order 1 ≤ k ≤ min{m, n}. Then

∣∣∣Aα
β

∣∣∣ denotes the minor of A determined by the

rows indexed by α and the columns indexed by β. Clearly, |Aα
α| denotes a principal minor

determined by the rows and columns indexed by α. The cofactor of aij in A ∈ C
n×n is

denoted by ∂
∂aij

|A|.

For 1 ≤ k ≤ n, Lk,n := {α : α = (α1, . . . , αk) , 1 ≤ α1 ≤ . . . ≤ αk ≤ n} denotes

the collection of strictly increasing sequences of k integers chosen from {1, . . . , n}. Let

Nk := Lk,m × Lk,n. For fixed α ∈ Lp,m, β ∈ Lp,n, 1 ≤ p ≤ k, let

Ik, m (α) := {I : I ∈ Lk,m, I ⊇ α},
Jk, n (β) := {J : J ∈ Lk, n, J ⊇ β},

Nk (α, β) := Ik, m (α) × Jk, n (β)

For case i ∈ α and j ∈ β, we denote

Ik,m{i} := {α : α ∈ Lk,m, i ∈ α}, Jk,n{j} := {β : β ∈ Lk,n, j ∈ β},
Nk{i, j} := Ik, m{i} × Jk, n{j}.

The chapter is organized as follows. In Section 2 determinantal representations by ana-

logues of the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose,

Drazin and weighted Drazin inverses are obtained.

In Section 3 we show that the obtained analogues of the adjoint matrix for the general-

ized inverse matrices enable us to obtain natural analogues of Cramer’s rule for generalized

inverse solutions of systems of linear equations and demonstrate it in two examples.

In Section 4, we obtain analogs of the Cramer rule for generalized inverse solutions of

the matrix equations, AX = B, XA = B and AXB = D, namely for the minimum norm

least squares solutions and the Drazin inverse solutions. We show numerical examples to

illustrate the main results as well.
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In Section 5, we use the determinantal representations of the Drazin inverse solution to

solutions of the following differential matrix equations, X′+AX = B and X′+XA = B,

where A is singular. It is demonstrated in the example.

Facts set forth in Sections 2 and 3 were partly published in [6], in Section 4 were

published in [7, 8] and in Sections 5 were published in [8].

Note that we obtained some of the submitted results for matrices over the quaternion

skew field within the framework of the theory of the column and row determinants [9, 10,

11, 12, 13, 14].

2. Analogues of the Classical Adjoint Matrix for Generalized

Inverse Matrices

For determinantal representations of the generalized inverse matrices as analogues of

the classical adjoint matrix, we apply the method, which consists on the limit representation

of the generalized inverse matrices, lemmas on rank of some matrices and on characteristic

polynomial. We used this method at first in [6] and then in [8]. Liu et al. in [15] deduce

the new determinantal representations of the outer inverse A
(2)
T,S based on these principles

as well. In this chapter we obtain detailed determinantal representations by analogues of

the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose, Drazin and

weighted Drazin inverses.

2.1. Analogues of the Classical Adjoint Matrix for the Moore - Penrose

Inverse

Determinantal representation of the Moore - Penrose inverse was studied in [1],[16, 17,

18, 19]. The main result consists in the following theorem.

Theorem 2.1. The Moore - Penrose inverse A+ = (a+
ij) ∈ C

n×m of A ∈ C
m×n
r has the

following determinantal representation

a+
ij =

∑
(α, β)∈Nr{j, i}

∣∣∣(A∗)βα

∣∣∣ ∂
∂aj i

∣∣∣Aα
β

∣∣∣

∑
(γ, δ)∈Nr

∣∣∣(A∗)δ
γ

∣∣∣
∣∣Aγ

δ

∣∣
, 1 ≤ i, j ≤ n.

This determinantal representation of the Moore - Penrose inverse is based on corre-

sponding full-rank representation [16]: if A = PQ, where P ∈ C
m×r
r and Q ∈ C

r×n
r ,

then

A+ = Q∗(P∗AQ∗)−1P∗.

For a better understanding of the structure of the Moore - Penrose inverse we consider

it by singular value decomposition of A. Let

AA∗ui = σ2
i ui, i = 1, m

A∗Avi = σ2
i vi, i = 1, n,

σ1 ≤ σ2 ≤ ...σr > 0 = σr+1 = σr+2 = ...
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and the singular value decomposition (SVD) of A is A = UΣV∗, where

U = [u1 u2...um] ∈ C
m×m, U∗U = Im,

V = [v1 v2...vn] ∈ Cn×n, V∗V = In,

Σ = diag(σ1, σ2, ..., σr) ∈ C
m×n.

Then [3], A+ = VΣ+U∗, where Σ+ = diag(σ−1
1 , σ−1

2 , ..., σ−1
r ).

We need the following limit representation of the Moore-Penrose inverse.

Lemma 2.2. [20] If A ∈ C
m×n, then

A+ = lim
λ→0

A∗ (AA∗ + λI)−1 = lim
λ→0

(A∗A + λI)−1
A∗,

where λ ∈ R+, and R+ is the set of positive real numbers.

Corollary 2.3. [21] If A ∈ C
m×n, then the following statements are true.

i) If rankA = n, then A+ = (A∗A)−1
A∗ .

ii) If rankA = m, then A+ = A∗ (AA∗)−1
.

iii) If rankA = n = m, then A+ = A−1 .

We need the following well-known theorem about the characteristic polynomial and

lemmas on rank of some matrices.

Theorem 2.4. [22] Let dr be the sum of principal minors of order r of A ∈ Cn×n. Then

its characteristic polynomial pA (t) can be expressed as pA (t) = det (tI −A) = tn −
d1t

n−1 + d2t
n−2 − . . . + (−1)n

dn.

Lemma 2.5. If A ∈ Cm×n
r , then rank (A∗A). i

(
a∗.j

)
≤ r.

Proof. Let Pi k (−aj k) ∈ C
n×n, (k 6= i), be the matrix with −aj k in the (i, k) entry, 1

in all diagonal entries, and 0 in others. It is the matrix of an elementary transformation. It

follows that

(A∗A). i

(
a∗. j
)
·
∏

k 6=i

Pi k (−aj k) =




∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

.

The obtained above matrix has the following factorization.




∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

=
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=




a∗11 a∗12 . . . a∗1m

a∗21 a∗22 . . . a∗2m

. . . . . . . . . . . .

a∗n1 a∗n2 . . . a∗nm







a11 . . . 0 . . . an1

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0
. . . . . . . . . . . . . . .

am1 . . . 0 . . . amn




i−th

j − th.

Denote by Ã :=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

am1 . . . 0 . . . amn




i−th

j − th. The matrix Ã is obtained from

A by replacing all entries of the jth row and of the ith column with zeroes except that the

(j, i) entry equals 1. Elementary transformations of a matrix do not change its rank. It

follows that rank (A∗A). i

(
a∗.j

)
≤ min

{
rankA∗, rank Ã

}
. Since rank Ã ≥ rank A =

rankA∗ and rankA∗A = rankA the proof is completed. The following lemma can be

proved in the same way.

Lemma 2.6. If A ∈ Cm×n
r , then rank (AA∗)i .

(
a∗j .

)
≤ r.

Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.7. If A ∈ C
m×n and λ ∈ R, then

det
(
(λIn + A∗A). i

(
a∗.j
))

= c
(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n , (2.1)

where c
(ij)
n =

∣∣∣(A∗A). i

(
a∗.j

)∣∣∣ and c
(ij)
s =

∑
β∈Js, n{i}

∣∣∣∣
(
(A∗A). i

(
a∗.j

))β

β

∣∣∣∣ for all s =

1, n− 1, i = 1, n, and j = 1, m.

Proof. Denote A∗A = V = (vij) ∈ C
n×n . Consider (λIn + V). i (v.i) ∈ C

n×n. Taking

into account Theorem 2.4 we obtain

|(λIn + V). i (v.i)| = d1λ
n−1 + d2λ

n−2 + . . . + dn, (2.2)

where ds =
∑

β∈Js, n{i}

|(V)β
β| is the sum of all principal minors of order s that contain the

i-th column for all s = 1, n− 1 and dn = det V. Since v. i =
∑
l

a∗. lali, where a∗. l is the

lth column-vector of A∗ for all l = 1, n, then we have on the one hand

|(λI + V). i (v. i)| =
∑
l

|(λI + V). l (a
∗
. lali)| =

∑
l

|(λI + V). i (a
∗
. l)| · ali

(2.3)

Having changed the order of summation, we obtain on the other hand for all s = 1, n− 1

ds =
∑

β∈Js,n{i}

∣∣∣(V)ββ

∣∣∣ =
∑

β∈Js, n{i}

∑
l

∣∣∣(V. i (a
∗
. lal i))

β
β

∣∣∣ =

∑
l

∑
β∈Js,n{i}

∣∣∣(V. i (a
∗
. l))

β
β

∣∣∣ · al i.
(2.4)
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By substituting (2.3) and (2.4) in (2.2), and equating factors at al i when l = j, we obtain

the equality (2.1).

By analogy can be proved the following lemma.

Lemma 2.8. If A ∈ C
m×n and λ ∈ R, then

det ((λIm + AA∗)j . (a
∗
i.)) = r

(ij)
1 λm−1 + r

(ij)
2 λm−2 + . . . + r(ij)

m ,

where r
(ij)
m = |(AA∗)j . (a

∗
i. )| and r

(ij)
s =

∑
α∈Is,m{j}

∣∣((AA∗)j . (a
∗
i. ))

α
α

∣∣ for all s =

1, n− 1, i = 1, n, and j = 1, m.

The following theorem and remarks introduce the determinantal representations of the

Moore-Penrose by analogs of the classical adjoint matrix.

Theorem 2.9. If A ∈ Cm×n
r and r < min{m, n}, then the Moore-Penrose inverse A+ =(

a+
ij

)
∈ Cn×m possess the following determinantal representations:

a+
ij =

∑
β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
a∗.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
, (2.5)

or

a+
ij =

∑
α∈Ir,m{j}

|((AA∗)j . (a
∗
i. ))

α
α|

∑
α∈Ir, m

|(AA∗) α
α|

. (2.6)

for all i = 1, n, j = 1, m.

Proof. At first we shall obtain the representation (2.5). If λ ∈ R+, then the matrix

(λI + A∗A) ∈ Cn×n is Hermitian and rank (λI + A∗A) = n. Hence, there exists its

inverse

(λI + A∗A)−1 =
1

det (λI + A∗A)




L11 L21 . . . Ln 1

L12 L22 . . . Ln 2

. . . . . . . . . . . .

L1 n L2n . . . Ln n


 ,

where Lij (∀i, j = 1, n) is a cofactor in λI + A∗A. By Lemma 2.2, A+ =

lim
λ→0

(λI + A∗A)−1
A∗, so that

A+ = lim
λ→0




det(λI+A
∗
A).1(a∗

. 1)
det(λI+A∗A) . . .

det(λI+A
∗
A). 1(a

∗
. m)

det(λI+A∗A)

. . . . . . . . .
det(λI+A

∗
A). n(a∗

.1)
det(λI+A∗A) . . .

det(λI+A∗A). n(a∗
. m)

det(λI+A∗A)


 . (2.7)

From Theorem 2.4 we get

det (λI + A∗A) = λn + d1λ
n−1 + d2λ

n−2 + . . . + dn,
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where dr (∀r = 1, n− 1) is a sum of principal minors of A∗A of order r and dn =
det A∗A. Since rankA∗A = rankA = r, then dn = dn−1 = . . . = dr+1 = 0 and

det (λI + A∗A) = λn + d1λ
n−1 + d2λ

n−2 + . . . + drλ
n−r. (2.8)

In the same way, we have for arbitrary 1 ≤ i ≤ n and 1 ≤ j ≤ m from Lemma 2.7

det (λI + A∗A). i
(
a∗.j
)

= l
(ij)
1 λn−1 + l

(ij)
2 λn−2 + . . . + l(ij)n ,

where for an arbitrary 1 ≤ k ≤ n − 1, l
(ij)
k =

∑
β∈Jk, n{i}

∣∣∣∣
(
(A∗A). i(a

∗
.j)
)β

β

∣∣∣∣, and l
(i j)
n =

det (A∗A). i

(
a∗. j

)
. By Lemma 2.5, rank (A∗A). i

(
a∗. j

)
≤ r so that if k > r, then

∣∣∣∣
(
(A∗A) . i(a

∗
.j)
)β

β

∣∣∣∣ = 0, (∀β ∈ Jk, n{i}, ∀i = 1, n, ∀j = 1, m). Therefore if r + 1 ≤ k <

n, then l
(ij)
k =

∑
β∈Jk, n{i}

∣∣∣∣
(
(A∗A) . i(a

∗
.j)
)β

β

∣∣∣∣ = 0 and l
(i j)
n = det (A∗A). i

(
a∗. j

)
= 0,

(
∀i = 1, n, ∀j = 1, m

)
. Finally we obtain

det (λI + A∗A). i
(
a∗. j

)
= l

(i j)
1 λn−1 + l

(i j)
2 λn−2 + . . . + l(ij)r λn−r . (2.9)

By replacing the denominators and the numerators of the fractions in entries of matrix

(2.7) with the expressions (2.8) and (2.9) respectively, we get

A+ = lim
λ→0




l
(11)
1 λn−1+...+l

(11)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(1m)
1 λn−1+...+l

(1m)
r λn−r

λn+d1λn−1+...+drλn−r

. . . . . . . . .

l
(n1)
1 λn−1+...+l

(n1)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(nm)
1 λn−1+...+l

(nm)
r λn−r

λn+d1λn−1+...+drλn−r


 =

=




l
(11)
r

dr
. . . l

(1m)
r

dr

. . . . . . . . .

l
(n1)
r

dr
. . . l

(nm)
r

dr


 .

From here it follows (2.5).

We can prove (2.6) in the same way.

Corollary 2.10. If A ∈ C
m×n
r and r < min {m, n} or r = m < n, then the projection

matrix P = A+A can be represented as

P =

(
pij

dr (A∗A)

)

n×n

,

where d. j denotes the jth column of (A∗A) and, for arbitrary 1 ≤ i, j ≤ n, pij =
∑

β∈Jr,n{i}

∣∣∣((A∗A) . i(d.j))
β
β

∣∣∣.
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Proof. Representing the Moore - Penrose inverse A+ by (2.5), we obtain

P =
1

dr (A∗A)




l11 l12 . . . l1m

l21 l22 . . . l2m

. . . . . . . . . . . .

ln1 ln2 . . . lnm







a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am 1 am 2 . . . am n


 .

Therefore, for arbitrary 1 ≤ i, j ≤ n we get

pi j =
∑
k

∑
β∈Jr, n{i}

∣∣∣((A∗A). i(a
∗
. k))

β
β

∣∣∣ · ak j =

=
∑

β∈Jr, n{i}

∑
k

∣∣∣((A∗A). i(a
∗
. k · ak j))

β
β

∣∣∣ =
∑

β∈Jr, n{i}

∣∣∣∣
(
(A∗A). i(d

∗
.j)
)β

β

∣∣∣∣.

Using the representation (2.6) of the Moore - Penrose inverse the following corollary can

be proved in the same way.

Corollary 2.11. If A ∈ Cm×n
r , where r < min{m, n} or r = n < m, then a projection

matrix Q = AA+ can be represented as

Q =

(
qij

dr (AA∗)

)

m×m

,

where gi. denotes the ith row of (AA∗) and, for arbitrary 1 ≤ i, j ≤ m, qi j =∑
α∈Ir,m{j}

∣∣((AA∗)j. (gi. ))
α
α

∣∣.

Remark 2.12. If rankA = n, then from Corollary 2.3 we get A+ = (A∗A)−1
A∗. Rep-

resenting (A∗A)−1 by the classical adjoint matrix, we have

A+ =
1

det(A∗A)




det(A∗A).1 (a∗.1) . . . det(A∗A).1 (a∗. m)
. . . . . . . . .

det(A∗A). n (a∗. 1) . . . det(A∗A). n (a∗. m)


 . (2.10)

If n < m, then (2.5) is valid.

Remark 2.13. As above, if rankA = m, then

A+ =
1

det(AA∗)




det(AA∗)1 . (a
∗
1 .) . . . det(AA∗)m . (a

∗
1 .)

. . . . . . . . .

det(AA∗)1 . (a
∗
n .) . . . det(AA∗)m . (a

∗
n .)


 . (2.11)

If n > m, then (2.6) is valid as well.

Remark 2.14. By definition of the classical adjoint Adj(A) for an arbitrary invertible

matrix A ∈ C
n×n one may put, Adj(A) ·A = det A · In.

If A ∈ C
m×n and rankA = n, then by Corollary 2.3, A+A = In. Representing the

matrix A+ by (2.10) as A+ = L

det(A∗A)
, we obtain LA = det (A∗A) · In. This means

that the matrix L = (lij) ∈ C
n×m is a left analogue of Adj(A) , where A ∈ C

m×n
n , and

lij = det(A∗A).i

(
a∗.j

)
for all i = 1, n, j = 1, m.
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If rankA = m, then by Corollary 2.3, AA+ = Im. Representing the matrix A+

by (2.11) as A+ = R

det(AA∗)
, we obtain AR = Im · det (AA∗). This means that the

matrix R = (rij) ∈ C
m×n is a right analogue of Adj(A), where A ∈ C

m×n
m , and rij =

det(AA∗)j . (a
∗
i .) for all i = 1, n, j = 1, m.

If A ∈ Cm×n
r and r < min{m, n}, then by (2.5) we have A+ = L

dr(A∗A)
, where L =

(lij) ∈ Cn×m and lij =
∑

β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
a∗.j

))
β
β

∣∣∣ for all i = 1, n, j = 1, m. From

Corollary 2.10 we get LA = dr (A∗A) ·P. The matrix P is idempotent. All eigenvalues of

an idempotent matrix chose from 1 or 0 only. Thus, there exists an unitary matrix U such

that

LA = dr (A∗A)Udiag (1, . . . , 1, 0, . . . , 0)U∗,

where diag (1, . . . , 1, 0, . . . , 0) ∈ C
n×n is a diagonal matrix. Therefore, the matrix L can

be considered as a left analogue of Adj(A), where A ∈ Cm×n
r .

In the same way, if A ∈ C
m×n
r and r < min{m, n}, then by (2.5) we have A+ =

R

dr(AA∗) , where R = (rij) ∈ C
n×m, rij =

∑
α∈Ir,m{j}

|((AA∗)j . (a
∗
i. ))

α
α|for all i = 1, n,

j = 1, m. From Corollary 2.11 we get AR = dr (AA∗) · Q. The matrix Q is idempotent.

There exists an unitary matrix V such that

AR = dr (AA∗)Vdiag (1, . . . , 1, 0, . . . , 0)V∗,

where diag (1, . . . , 1, 0, . . . , 0) ∈ C
m×m. Therefore, the matrix R can be considered as a

right analogue of Adj(A) in this case.

Remark 2.15. To obtain an entry of A+ by Theorem 2.1 one calculates (Cr
nCr

m +
Cr−1

n−1C
r−1
m−1) determinants of order r. Whereas by the equation (2.5) we calculate as much

as (Cr
n + Cr−1

n−1) determinants of order r or we calculate the total of (Cr
m + Cr−1

m−1) deter-

minants by (2.6). Therefore the calculation of entries of A+ by Theorem 2.9 is easier than

by Theorem 2.1.

2.2. Analogues of the Classical Adjoint Matrix for the Weighted

Moore-Penrose Inverse

Let Hermitian positive definite matrices M and N of order m and n, respectively, be

given. The weighted Moore-Penrose inverse X = A+
M,N can be explicitly expressed from

the weighted singular value decomposition due to Van Loan [23].

Lemma 2.16. Let A ∈ Cm×n
r . There exist U ∈ Cm×m, V ∈ Cn×n satisfying U∗MU =

Im and V∗N−1V = In such that

A = U

(
D 0

0 0

)
V∗.

Then the weighted Moore-Penrose inverse A+
M,N can be represented

A+
M,N = N−1V

(
D−1 0

0 0

)
U∗M,
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where D = diag(σ1, σ2, ..., σr), σ1 ≥ σ2 ≥ ... ≥ σr > 0 and σ2
i is the nonzero eigenvalues

of N−1A∗MA.

For the weighted Moore-Penrose inverse X = A+
M,N , we have the following limit

representation.

Lemma 2.17. ([24], Corollary 3.4.) Let A ∈ Cm×n, A] = N−1A∗M. Then

A+
M,N = lim

λ→0
(λI + A]A)−1A].

By analogy to Lemma 2.17 can be proved the following lemma.

Lemma 2.18. Let A ∈ Cm×n, A] = N−1A∗M. Then

A+
M,N = lim

λ→0
A](λI + AA])−1.

Denote by a
]
.j and a

]
i. the jth column and the ith row of A] respectively. By putting A]

instead A∗, we obtain the proofs of the following two lemmas and theorem similar to the

proofs of Lemmas 2.5, 2.6, 2.7, 2.8 and Theorem 2.9, respectively.

Lemma 2.19. If A ∈ Cm×n
r and A] is defined as above, then

rank
(
A]A

)
. i

(
a

]
.j

)
≤ rank

(
A]A

)
,

rank
(
AA]

)
j .

(
a

]
i .

)
≤ rank

(
AA]

)
,

for all i = 1, n and j = 1, m

Analogues of the characteristic polynomial are considered in the following lemma.

Lemma 2.20. If A ∈ C
m×n and λ ∈ R, then

det
((

λIn + A]A
)

. i

(
a

]
.j

))
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n ,

det
(
(λIm + AA])j . (a

]
i.)
)

= r
(ij)
1 λm−1 + r

(ij)
2 λm−2 + . . . + r(ij)

m ,

where c
(ij)
n =

∣∣∣
(
A]A

)
. i

(
a

]
.j

)∣∣∣, r
(ij)
m = |(AA∗)j . (a

∗
i. )| and c

(ij)
s =

∑
β∈Js, n{i}

∣∣∣∣
((

A]A
)
. i

(
a

]
.j

))β

β

∣∣∣∣, r
(ij)
t =

∑
α∈It,m{j}

∣∣∣
(
(AA])j . (a

]
i. )
)α

α

∣∣∣ for all s = 1, n− 1,

t = 1, m− 1, i = 1, n, and j = 1, m.

The following theorem introduce the determinantal representations of the weighted

Moore-Penrose by analogs of the classical adjoint matrix.
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Theorem 2.21. If A ∈ C
m×n
r and r < min{m, n}, then the weighted Moore-Penrose

inverse A+
M,N =

(
ã+

ij

)
∈ C

n×m possess the following determinantal representation:

ã+
ij =

∑
β∈Jr, n{i}

∣∣∣
((

A]A
)

. i

(
a

]
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A]A)
β
β

∣∣∣
, (2.12)

or

ã+
ij =

∑
α∈Ir,m{j}

∣∣∣
(
(AA])j . (a

]
i. )
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA]) α
α|

, (2.13)

for all i = 1, n, j = 1, m.

2.3. Analogues of the Classical Adjoint Matrix for the Drazin Inverse

The Drazin inverse can be represented explicitly by the Jordan canonical form as fol-

lows.

Theorem 2.22. [25] If A ∈ Cn×n with IndA = k and

A = P

(
C 0

0 N

)
P−1

where C is nonsingular and rankC = rankAk, and N is nilpotent of order k, then

AD = P

(
C−1 0

0 0

)
P−1. (2.14)

Stanimirovic’ [26] introduced a determinantal representation of the Drazin inverse by

the following theorem.

Theorem 2.23. The Drazin inverse AD =
(
aD

ij

)
of an arbitrary matrix A ∈ C

n×n with

IndA = k possesses the following determinantal representation

aD
ij =

∑
(α,β)∈Nrk

{j, i}

∣∣∣(As)β
α

∣∣∣ ∂
∂aj i

∣∣∣Aα
β

∣∣∣

∑
(γ, δ)∈Nrk

∣∣∣(As)δγ

∣∣∣
∣∣Aγ

δ

∣∣
, 1 ≤ i, j ≤ n; (2.15)

where s ≥ k and rk = rankAs.

This determinantal representations of the Drazin inverse is based on a full-rank repre-

sentation.

We use the following limit representation of the Drazin inverse.
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Lemma 2.24. [27] If A ∈ C
n×n , then

AD = lim
λ→0

(
λIn + Ak+1

)−1
Ak,

where k = IndA, λ ∈ R+, and R+ is a set of the real positive numbers.

Since the equation (1.6) can be replaced by follows

XAk+1 = Ak,

the following lemma can be obtained by analogy to Lemma 2.24.

Lemma 2.25. If A ∈ C
n×n, then

AD = lim
λ→0

Ak
(
λIn + Ak+1

)−1
,

where k = IndA, λ ∈ R+, and R+ is a set of the real positive numbers.

Denote by a
(k)
.j and a

(k)
i. the jth column and the ith row of Ak respectively.

We consider the following auxiliary lemma.

Lemma 2.26. If A ∈ Cn×n with IndA = k, then for all i, j = 1, n

rankAk+1
i .

(
a

(k)
j.

)
≤ rankAk+1.

Proof. The matrix Ak+1
i .

(
a

(k)
j .

)
may by represent as follows




n∑
s=1

a1sa
(k)
s1 . . .

n∑
s=1

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s=1
ansa

(k)
s1 . . .

n∑
s=1

ansa
(k)
sn




Let Pl i (−al j) ∈ C
n×n, (l 6= i), be a matrix with −al j in the (l, i) entry, 1 in all diagonal

entries, and 0 in others. It is a matrix of an elementary transformation. It follows that

Ak+1
i .

(
a

(k)
j .

)
·
∏

l 6=i

Pl i (−al j) =




n∑
s6=j

a1sa
(k)
s1 . . .

n∑
s6=j

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s6=j

ansa
(k)
s1 . . .

n∑
s6=j

ansa
(k)
sn




ith
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The obtained above matrix has the following factorization.




n∑
s6=j

a1sa
(k)
s1 . . .

n∑
s6=j

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s6=j

ansa
(k)
s1 . . .

n∑
s6=j

ansa
(k)
sn




=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann







a
(k)
11 a

(k)
12 . . . a

(k)
1n

a
(k)
21 a

(k)
22 . . . a

(k)
2n

. . . . . . . . . . . .

a
(k)
n1 a

(k)
n2 . . . a

(k)
nn




Denote the first matrix by

Ã :=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann




jth

ith.

The matrix Ã is obtained from A by replacing all entries of the ith row and the jth column

with zeroes except for 1 in the (i, j) entry. Elementary transformations of a matrix do

not change its rank. It follows that rankAk+1
i .

(
a

(k)
j .

)
≤ min

{
rankAk, rank Ã

}
. Since

rank Ã ≥ rankAk the proof is completed.

The following lemma is proved similarly.

Lemma 2.27. If A ∈ Cn×n with IndA = k, then for all i, j = 1, n

rankAk+1
. i

(
a

(k)
.j

)
≤ rankAk+1.

Lemma 2.28. If A ∈ Cn×n and λ ∈ R, then

det
(
(λIn + Ak+1)j . (a

(k)
i. )
)

= r
(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n , (2.16)

where r
(ij)
n =

∣∣∣Ak+1
j . (a

(k)
i. )
∣∣∣ and r

(ij)
s =

∑
α∈Is,n{j}

∣∣∣
(
Ak+1

j . (a
(k)
i. )
)α

α

∣∣∣ for all s = 1, n− 1

and i, j = 1, n.

Proof. Consider the matrix
(
(λIn + Ak+1)j . (a

(k)
j. )
)
∈ C

n×n. Taking into account Theo-

rem 2.4 we obtain
∣∣∣
(
(λIn + Ak+1)j . (a

(k)
j. )
)∣∣∣ = d1λ

n−1 + d2λ
n−2 + . . . + dn, (2.17)
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where ds =
∑

α∈Is, n{j}

|(Ak+1)α
α| is the sum of all principal minors of order s that contain

the j-th row for all s = 1, n− 1 and dn = det Ak+1. Since a
(k+1)
j. =

∑
l

ajla
(k)
l. , where

a
(k)
l. is the lth row-vector of Ak for all l = 1, n, then we have on the one hand

∣∣∣
(
(λIn + Ak+1)j .(a

(k)
j. )
)∣∣∣ =

∑
l

∣∣∣
(
λI + Ak+1

)
l.

(
ajla

(k)
l.

)∣∣∣ =

∑
l

ajl ·
∣∣∣
(
λI + Ak+1

)
l.

(
a

(k)
l.

)∣∣∣
(2.18)

Having changed the order of summation, we obtain on the other hand for all s = 1, n− 1

ds =
∑

α∈Is,n{j}

∣∣(Ak+1
)α
α

∣∣ =
∑

α∈Is, n{j}

∑
l

∣∣∣
(
Ak+1

j.

(
ajla

(k)
l.

))α

α

∣∣∣ =

∑
l

ajl ·
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
l.

))α

α

∣∣∣
(2.19)

By substituting (2.18) and (2.19) in (2.17), and equating factors at ajl when l = i, we obtain

the equality (2.16).

Theorem 2.29. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ Cn×n, then the

Drazin inverse AD =
(
aD

ij

)
∈ C

n×n possess the following determinantal representations:

aD
ij =

∑
α∈Ir,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣
∑

α∈Ir,n

∣∣(Ak+1)
α
α

∣∣ , [ (2.20)

and

aD
ij =

∑
β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a

(k)
.j

))β

β

∣∣∣∣
∑

β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
, (2.21)

for all i, j = 1, n.

Proof. At first we shall prove the equation (2.20).

If λ ∈ R+, then rank
(
λI + Ak+1

)
= n. Hence, there exists the inverse matrix

(
λI + Ak+1

)−1
=

1

det (λI + Ak+1)




R11 R21 . . . Rn 1

R12 R22 . . . Rn 2

. . . . . . . . . . . .

R1n R2n . . . Rn n


 ,

where Rij is a cofactor in λI + Ak+1 for all i, j = 1, n. By Theorem 2.25, AD =

lim
λ→0

Ak
(
λIn + Ak+1

)−1
, so that

AD = lim
λ→0

1

det (λI + Ak+1)




∑n
s=1 a

(k)
1s R1s . . .

∑n
s=1 a

(k)
1s Rns

. . . . . . . . .∑n
s=1 a

(k)
ns R1s . . .

∑n
s=1 a

(k)
ns Rns


 =
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lim
λ→0




det(λI+Ak+1)
1.

“
a
(k)
1.

”

det(λI+Ak+1)
. . .

det(λI+Ak+1)
n.

“
a
(k)
n.

”

det(λI+Ak+1)
. . . . . . . . .

det(λI+Ak+1)
1.

“
a
(k)
n.

”

det(λI+Ak+1)
. . .

det(λI+Ak+1)
n.

“
a
(k)
n.

”

det(λI+Ak+1)




(2.22)

Taking into account Theorem 2.4 , we have

det
(
λI + Ak+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + dn,

where ds =
∑

α∈Is,n

∣∣(Ak+1
)α
α

∣∣ is a sum of the principal minors of Ak+1 of order s, for all

s = 1, n− 1, and dn = det Ak+1. Since rankAk+1 = r, then dn = dn−1 = . . . =
dr+1 = 0 and

det
(
λI + Ak+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + drλ

n−r. (2.23)

By Lemma 2.28 for all i, j = 1, n,

det
(
λI + Ak+1

)
j.

(
a

(k)
i.

)
= l

(ij)
1 λn−1 + l

(ij)
2 λn−2 + . . . + l(ij)n ,

where for all s = 1, n− 1,

l(ij)s =
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
i.

))α

α

∣∣∣,

and l
(i j)
n = det Ak+1

j .

(
a

(k)
i.

)
.

By Lemma 2.26, rankAk+1
j .

(
a

(k)
i .

)
≤ r, so that if s > r, then for all α ∈ Is,n{i} and

for all i, j = 1, n, ∣∣∣
(
Ak+1

j .

(
a

(k)
i.

))α

α

∣∣∣ = 0.

Therefore if r + 1 ≤ s < n, then for all i, j = 1, n,

l(ij)s =
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣ = 0,

and l
(ij)
n = detAk+1

j .

(
a

(k)
i.

)
= 0. Finally we obtain

det
(
λI + Ak+1

)
j.

(
a

(k)
i.

)
= l

(i j)
1 λn−1 + l

(i j)
2 λn−2 + . . . + l(ij)r λn−r . (2.24)

By replacing the denominators and the nominators of the fractions in the entries of the

matrix (2.22) with the expressions (2.23) and (2.24) respectively, finally we obtain

AD = lim
λ→0




l
(11)
1 λn−1+...+l

(11)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(1n)
1 λn−1+...+l

(1n)
r λn−r

λn+d1λn−1+...+drλn−r

. . . . . . . . .

l
(n1)
1 λn−1+...+l

(n1)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(nn)
1 λn−1+...+l

(nn)
r λn−r

λn+d1λn−1+...+drλn−r


 =
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=




l
(11)
r

dr
. . . l

(1n)
r

dr

. . . . . . . . .

l
(n1)
r

dr
. . . l

(nn)
r

dr


 ,

where for all i, j = 1, n,

l(ij)r =
∑

α∈Ir,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣, dr =
∑

α∈Ir,n

∣∣∣
(
Ak+1

)α

α

∣∣∣.

The equation (2.21) can be proved similarly.

This completes the proof. Using Theorem 2.29 we evidently can obtain determinantal

representations of the group inverse and the following determinantal representation of the

identities ADA and AAD on R(Ak)

Corollary 2.30. If IndA = 1 and rankA2 = rankA = r ≤ n for A ∈ C
n×n, then the

group inverse Ag =
(
a

g
ij

)
∈ C

n×n possess the following determinantal representations:

a
g
ij =

∑
α∈Ir,n{j}

∣∣∣
(
A2

j. (ai.)
)α

α

∣∣∣
∑

α∈Ir,n

|(A2)α
α|

, (2.25)

a
g
ij =

∑
β∈Jr,n{i}

∣∣∣
(
A2

. i (a.j)
)β
β

∣∣∣

∑
β∈Jr,n

∣∣∣(A2)β
β

∣∣∣
,

for all i, j = 1, n.

Corollary 2.31. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ C
n×n, then

the matrix AAD = (qij) ∈ Cn×n possess the following determinantal representation

qij =

∑
α∈Ir,n{j}

∣∣∣∣
(
Ak+1

j.

(
a

(k+1)
i.

))β

β

∣∣∣∣
∑

α∈Ir,n

∣∣∣(Ak+1)
β
β

∣∣∣
, (2.26)

for all i, j = 1, n.

Corollary 2.32. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ C
n×n, then

the matrix ADA = (pij) ∈ Cn×n possess the following determinantal representation

pij =

∑
β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a.j

(k+1)
))β

β

∣∣∣∣

∑
β∈Jr,n

∣∣∣∣
(
Ak+1

. i

)β

β

∣∣∣∣
, (2.27)

for all i, j = 1, n.
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2.4. Analogues of the Classical Adjoint Matrix for the W-Weighted

Drazin Inverse

Cline and Greville [28] extended the Drazin inverse of square matrix to rectangular ma-

trix and called it as the weighted Drazin inverse (WDI). The W-weighted Drazin inverse

of A ∈ C
m×n with respect to W ∈ C

n×m is defined to be the unique solution X ∈ C
m×n

of the following three matrix equations:

1) (AW)k+1XW = (AW)k,

2) XWAWX = X,

3) AWX = XWA,

(2.28)

where k = max{Ind(AW), Ind(WA)}. It is denoted by X = Ad,W . In particular, when

A ∈ C
m×m and W = Im , then Ad,W reduce to AD. If A ∈ C

m×m is non-singular square

matrix and W = Im, then Ind(A) = 0 and Ad,W = AD = A−1.

The properties of WDI can be found in (e.g.,[29, 30, 31, 32]). We note the general

algebraic structures of the W-weighted Drazin inverse [29]. Let for A ∈ Cm×n and W ∈
Cn×m exist L ∈ Cm×m and Q ∈ Cn×n such that

A = L

(
A11 0

0 A22

)
Q−1, W = Q

(
W11 0

0 W22

)
L−1.

Then

Ad,W = L

(
(W11A11W11)

−1 0

0 0

)
Q−1,

where L, L, A11, W11 are non-singular matrices, and A22, W22 are nilpotent matrices.

By [27] we have the following limit representations of the W-weighted Drazin inverse,

Ad,W = lim
λ→0

(
λIm + (AW)k+2

)−1
(AW)kA (2.29)

and

Ad,W = lim
λ→0

A(WA)k
(
λIn + (WA)k+2

)−1
(2.30)

where λ ∈ R+, and R+ is a set of the real positive numbers.

Denote WA =: U and AW =: V. Denote by v
(k)
.j and v

(k)
i. the jth column and the ith

row of Vk respectively. Denote by V̄k := (AW)kA ∈ Cm×n and W̄ = WAW ∈ Cn×m.

Lemma 2.33. If AW = V = (vij) ∈ C
m×m with IndV = k, then

rank
(
Vk+2

)
. i

(
v̄

(k)
.j

)
≤ rank

(
Vk+2

)
. (2.31)

Proof. We have Vk+2 = V̄kW̄. Let Pi s (−w̄j s) ∈ Cm×m, (s 6= i), be a matrix with

−w̄j s in the (i, s) entry, 1 in all diagonal entries, and 0 in others. The matrix Pi s (−w̄j s),

(s 6= i), is a matrix of an elementary transformation. It follows that

(
Vk+2

)
. i

(
v̄

(k)
. j

)
·
∏

s6=i

Pi s (−w̄j s) =




∑
s6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

∑
s6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .∑
s6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

∑
s6=j

v̄
(k)
msw̄sm




i−th

.
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We have the next factorization of the obtained matrix.




∑
s6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

∑
s6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .∑
s6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

∑
s6=j

v̄
(k)
msw̄sm




i−th

=

=




v̄
(k)
11 v̄

(k)
12 . . . v̄

(k)
1n

v̄
(k)
21 v̄

(k)
22 . . . v̄

(k)
2n

. . . . . . . . . . . .

v̄
(k)
m1 v̄

(k)
m2 . . . v̄

(k)
mn







w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th.

Denote W̃ :=




w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th. The matrix W̃ is obtained from

W̄ = WAW by replacing all entries of the jth row and the ith column with zeroes except

for 1 in the (i, j) entry. Since elementary transformations of a matrix do not change a rank,

then rankVk+2
. i

(
v̄

(k)
.j

)
≤ min

{
rank V̄k, rankW̃

}
. It is obvious that

rank V̄k = rank (AW)kA ≥ rank (AW)k+2,

rankW̃ ≥ rank WAW ≥ rank (AW)k+2.

From this the inequality (2.31) follows immediately.

The next lemma is proved similarly.

Lemma 2.34. If WA = U = (uij) ∈ Cn×n with IndU = k, then

rank
(
Uk+2

)
i .

(
ū

(k)
j .

)
≤ rank

(
Uk+2

)
,

where Ūk := A(WA)k ∈ Cm×n

Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.35. If AW = V = (vij) ∈ Cm×m with IndV = k and λ ∈ R, then

∣∣∣
(
λIm + Vk+2

)
. i

(
v̄

(k)
.j

)∣∣∣ = c
(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . . + c(ij)

m , (2.32)

where c
(ij)
m = det

(
Vk+2

)
. i

(
v̄

(k)
.j

)
and c

(ij)
s =

∑
β∈Js,m{i}

det
((

Vk+2
)
. i

(
v̄

(k)
.j

))
β
β for all

s = 1, m− 1, i = 1, m, and j = 1, n.
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Proof. Consider the matrix
(
λI + Vk+2

)
. i

(v
(k+2)
. i ) ∈ Cm×m. Taking into account Theo-

rem 2.4 we obtain
∣∣∣
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)∣∣∣ = d1λ
m−1 + d2λ

m−2 + . . . + dm, (2.33)

where ds =
∑

β∈Js,m{i}

|
(
Vk+2

)β
β
| is the sum of all principal minors of order s that con-

tain the i-th column for all s = 1, m− 1 and dm = det
(
Vk+2

)
. Since v

(k+2)
. i =



∑
l

v̄
(k)
1l w̄li

∑
l

v̄
(k)
2l w̄li

...∑
l

v̄
(k)
nl w̄li




=
∑
l

v̄
(k)
. l w̄li, where v̄

(k)
. l is the lth column-vector of V̄k = (AW)kA

and WAW = W̄ = (w̄li) for all l = 1, n, then we have on the one hand

∣∣∣
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)∣∣∣ =
∑
l

∣∣∣
(
λI + Vk+2

)
. l

(
v̄

(k)
. l w̄li

)∣∣∣ =

∑
l

∣∣∣
(
λI + Vk+2

)
. i

(
v̄

(k)
. l

)∣∣∣ · w̄li

(2.34)

Having changed the order of summation, we obtain on the other hand for all s = 1, m− 1

ds =
∑

β∈Js, m{i}

∣∣∣
(
Vk+2

) β
β

∣∣∣ =
∑

β∈Js,m{i}

∑
l

∣∣∣
((

Vk+2
)
. i

(
v̄

(k)
. l w̄l i

))
β
β

∣∣∣ =

∑
l

∑
β∈Js,m{i}

∣∣∣
((

Vk+2
)
. i

(
v̄

(k)
. l

))
β
β

∣∣∣ · w̄l i.
(2.35)

By substituting (2.34) and (2.35) in (2.33), and equating factors at w̄l i when l = j, we

obtain the equality (2.32). By analogy can be proved the following lemma.

Lemma 2.36. If WA = U = (uij) ∈ Cn×n with IndU = k and λ ∈ R, then

∣∣∣(λI + Uk+2)j . (ū
(k)
i. )
∣∣∣ = r

(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n ,

where r
(ij)
n =

∣∣∣(Uk+2)j . (ū
(k)
i. )
∣∣∣ and r

(ij)
s =

∑
α∈Is,n{j}

∣∣∣
(
(Uk+2)j . (ū

(k)
i. )
)

α
α

∣∣∣ for all s =

1, n− 1, i = 1, m, and j = 1, n.

Theorem 2.37. If A ∈ Cm×n, W ∈ Cn×m with k = max{Ind(AW), Ind(WA)} and

rank(AW)k = r, then the W-weighted Drazin inverse Ad,W =
(
a

d,W
ij

)
∈ Cm×n with

respect to W possess the following determinantal representations:

a
d,W
ij =

∑
β∈Jr, m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
, (2.36)
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or

a
d,W
ij =

∑
α∈Ir,n{j}

∣∣∣
(
(WA)k+2

j . (ū
(k)
i. )
)

α
α

∣∣∣

∑
α∈Ir, n

∣∣∣(WA)k+2 α
α

∣∣∣
. (2.37)

where v̄
(k)
.j is the jth column of V̄k = (AW)kA for all j = 1, ..., m and ū

(k)
i. is the ith row

of Ūk = A(WA)k for all i = 1, ..., n.

Proof. At first we shall prove (2.36). By (2.29),

Ad,W = lim
λ→0

(
λIm + (AW)k+2

)−1
(AW)kA.

Let

(
λIm + (AW)k+2

)−1
=

1

det (λIm + (AW)k+2)




L11 L21 . . . Lm1

L12 L22 . . . Lm2

. . . . . . . . . . . .

L1m L2m . . . Lmm


 ,

where Lij is a left ij-th cofactor of a matrix λIm + (AW)k+2. Then we have

(
λIm + (AW)k+2

)−1
(AW)kA =

= 1
det(λIm+(AW)k+2)




m∑
s=1

Ls1v̄
(k)
s1

m∑
s=1

Ls1v̄
(k)
s2 . . .

m∑
s=1

Ls1v̄
(k)
sn

m∑
s=1

Ls2v̄
(k)
s1

m∑
s=1

Ls2v̄
(k)
s2 . . .

m∑
s=1

Ls2v̄
(k)
sn

. . . . . . . . . . . .
m∑

s=1
Lsmv̄

(k)
s1

m∑
s=1

Lsmv̄
(k)
s2 . . .

m∑
s=1

Lsmv̄
(k)
sn




.

By (2.29), we obtain

Ad,W = lim
λ→0




˛̨
˛(λIm+(AW)k+2)

.1

“
v̄

(k)
.1

”˛̨
˛

|(λIm+(AW)k+2)|
. . .

˛̨
˛(λIm+(AW)k+2)

.1

“
v̄

(k)
.n

”˛̨
˛

|(λIm+(AW)k+2)|
. . . . . . . . .˛̨
˛(λIm+(AW)k+2)

.n

“
v̄

(k)
.1

”˛̨
˛

|(λIm+(AW)k+2)|
. . .

˛̨
˛(λIm+(AW)k+2)

.m

“
v̄

(k)
.n

”˛̨
˛

|(λIm+(AW)k+2)|




. (2.38)

By Theorem 2.4 we have

∣∣∣
(
λIm + (AW)k+2

)∣∣∣ = λm + d1λ
m−1 + d2λ

m−2 + . . . + dm,

where ds =
∑

β∈Js,m

∣∣∣
(
λIm + (AW)k+2

) β
β

∣∣∣ is a sum of principal minors of (AW)k+2 of

order s for all s = 1, m− 1 and dm =
∣∣(AW)k+2

∣∣.
Since

rank(AW)k+2 = rank(AW)k+1 = rank(AW)k = r,
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then

dm = dm−1 = . . . = dr+1 = 0.

It follows that det
(
λIm + (AW)k+2

)
= λm + d1λ

m−1 + d2λ
m−2 + . . . + drλ

m−r.

By Lemma 2.35

∣∣∣
(
λIm + (AW)k+2

)
. i

(
v̄

(k)
.j

)∣∣∣ = c
(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . . + c(ij)

m

for i = 1, m and j = 1, n, where c
(ij)
s =

∑
β∈Js, m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ for all s =

1, m− 1 and c
(ij)
m =

∣∣∣(AW)k+2
.i

(
v̄

(k)
.j

)∣∣∣.
We shall prove that c

(ij)
k = 0, when k ≥ r + 1 for i = 1, m and j = 1, n. By Lemma

2.33
(
(AW)k+2

. i

(
v̄

(k)
.j

))
≤ r, then the matrix

(
(AW)k+2

. i

(
v̄

(k)
.j

))
has no more r linearly

independent columns.

Consider
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β, when β ∈ Js,m{i}. It is a principal submatrix of

(
(AW)k+2

. i

(
v̄

(k)
.j

))
of order s ≥ r + 1. Deleting both its i-th row and column, we obtain

a principal submatrix of order s−1 of (AW)k+2. We denote it by M. The following cases

are possible.

• Let s = r + 1 and det M 6= 0. In this case all columns of M are right-

linearly independent. The addition of all of them on one coordinate to columns of(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β keeps their right-linear independence. Hence, they are basis

in a matrix
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β , and the i-th column is the right linear combina-

tion of its basis columns. From this,

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0, when β ∈ Js,n{i}

and s = r + 1.

• If s = r + 1 and det M = 0, than p, (p ≤ r), columns are basis in M and in(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β. Then

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0 as well.

• If s > r + 1, then det M = 0 and p, (p < r), columns are basis in the both matrices

M and
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β. Therefore,

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0.

Thus in all cases we have

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0, when β ∈ Js,m{i} and r + 1 ≤

s < m. From here if r + 1 ≤ s < m, then

c(ij)
s =

∑

β∈Js,m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0,

and c
(ij)
m = det

(
(AW)k+2

. i

(
v̄

(k)
.j

))
= 0 for i = 1, m and j = 1, n.

Hence,

∣∣∣
(
λI + (AW)k+2

)
. i

(
v̄

(k)
. j

)∣∣∣ = c
(ij)
1 λm−1 + . . . + c

(ij)
r λm−r for i = 1, m and

j = 1, n. By substituting these values in the matrix from (2.38), we obtain
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Ad,W = lim
λ→0




c
(11)
1 λm−1+...+c

(11)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(1n)
1 λm−1+...+c

(1n)
r λm−r

λm+d1λm−1+...+drλm−r

. . . . . . . . .

c
(m1)
1 λm−1+...+c

(m1)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(mn)
1 λm−1+...+c

(mn)
r λm−r

λm+d1λm−1+...+drλm−r


 =




c
(11)
r

dr
. . . c

(1n)
r

dr

. . . . . . . . .

c
(m1)
r

dr
. . . c

(mn)
r

dr


 .

where c
(ij)
r =

∑
β∈Jr, m{i}

∣∣∣
((

Ak+1
)

. i

(
a

(k)
.j

))
β
β

∣∣∣ and dr =
∑

β∈Jr, m

∣∣∣
(
Ak+1

) β
β

∣∣∣. Thus, we

have obtained the determinantal representation of Ad,W by (2.36).

By analogy can be proved (2.37).

3. Cramer’s Rules for Generalized Inverse Solutions of Systems

of Linear Equations

An obvious consequence of a determinantal representation of the inverse matrix by the

classical adjoint matrix is the Cramer rule. As we know, Cramer’s rule gives an explicit

expression for the solution of nonsingular linear equations. In [33], Robinson gave an ele-

gant proof of Cramer’s rule which aroused great interest in finding determinantal formulas

for solutions of some restricted linear equations both consistent and nonconsistent. It has

been widely discussed by Robinson [33], Ben-Israel [34], Verghese [35], Werner [36], Chen

[37], Ji [38] ,Wang [39], Wei [31].

In this section we demonstrate that the obtained analogues of the adjoint matrix for

the generalized inverse matrices enable us to obtain natural analogues of Cramer’s rule for

generalized inverse solutions of systems of linear equations.

3.1. Cramer’s Rule for the Least Squares Solution with the Minimum Norm

Definition 3.1. Suppose in a complex system of linear equations:

A · x = y (3.1)

the coefficient matrix A ∈ C
m×n
r and a column of constants y = (y1, . . . , ym)T ∈ C

m.

The least squares solution with the minimum norm of (3.1) is the vector x0 ∈ C
n satisfying

∥∥x0
∥∥ = min

x̃∈Cn

{
‖x̃‖ | ‖A · x̃ − y‖ = min

x∈Cn
‖A · x − y‖

}
,

where C
n is an n-dimension complex vector space.

If the equation (3.1) has no precision solutions, then x0 is its optimal approximation.

The following important proposition is well-known.

Theorem 3.2. [21] The vector x = A+y is the least squares solution with the minimum

norm of the system (3.1).
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Theorem 3.3. The following statements are true for the system of linear equations (3.1).

i) If rankA = n, then the components of the least squares solution with the minimum

norm x0 =
(
x0

1, . . . , x
0
n

)T
are obtained by the formula

x0
j =

det(A∗A). j (f)

detA∗A
,
(
∀j = 1, n

)
, (3.2)

where f = A∗y.

ii) If rankA = r ≤ m < n, then

x0
j =

∑
β∈Jr,n{j}

∣∣∣((A∗A). j(f))
β
β

∣∣∣

dr (A∗A)
,
(
∀j = 1, n

)
. (3.3)

Proof. i) If rankA = n, then we can represent A+ by (2.10). By multiplying A+ into y

we get (3.2).

ii) If rankA = k ≤ m < n, then A+ can be represented by (2.5). By multiplying A+

into y the least squares solution with the minimum norm of the linear system (3.1) is given

by components as in (3.3). Using (2.7) and (2.11), we can obtain another representation

of the Cramer rule for the least squares solution with the minimum norm of a linear system.

Theorem 3.4. The following statements are true for a system of linear equations written in

the form x · A = y.

i) If rankA = m, then the components of the least squares solution x0 = yA+ are

obtained by the formula

x0
i =

det(AA∗)i . (g)

det AA∗
,
(
∀i = 1, m

)
,

where g = yA∗.

ii) If rankA = r ≤ n < m, then

x0
i =

∑
α∈Ir,m{i}

|((AA∗) i .(g))α
α|

dr (AA∗)
,
(
∀i = 1, m

)
.

Proof. The proof of this theorem is analogous to that of Theorem 3.3.

Remark 3.5. The obtained formulas of the Cramer rule for the least squares solution differ

from similar formulas in [34, 36, 37, 38, 39]. They give a closer analogue to usual Cramer’s

rule for consistent nonsingular systems of linear equations.
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3.2. Cramer’s Rule for the Drazin Inverse Solution

In some situations, however, people pay more attention to the Drazin inverse solution

of singular linear systems [40, 41, 42, 43].

Consider a general system of linear equations (3.1), where A ∈ C
n×n and x, y are

vectors in C
n. R(A) denotes the range of A and N (A) denotes the null space of A.

The characteristic of the Drazin inverse solution ADy is given in [24] by the following

theorem.

Theorem 3.6. Let A ∈ C
n×n with Ind(A) = k. Then ADy is both the unique solution in

R(Ak) of

Ak+1x = Aky, (3.4)

and the unique minimal P-norm least squares solution of (3.1).

Remark 3.7. The P-norm is defined as ‖x‖P = ‖P−1x‖ for x ∈ C
n, where P is a

nonsingular matrix that transforms A into its Jordan canonical form (2.14).

In other words, the the Drazin inverse solution x = ADy is the unique solution of the

problem: for a given A and a given vector y ∈ R(Ak), find a vector x ∈ R(Ak) satisfying

Ax = y with Ind A = k.

In general, unlike A+y, the Drazin inverse solution ADy is not a true solution of a

singular system (3.1), even if the system is consistent. However, Theorem 3.6 means that

ADy is the unique minimal P-norm least squares solution of (3.1).

A determinantal representation of the P-norm least squares solution of a system of

linear equations (3.1) by the determinantal representation (2.15) of the Drazin inverse has

been obtained in [44].

We give Cramer’s rule for the P-norm least squares solution (the Drazin inverse solu-

tion) of (3.1) in the following theorem.

Theorem 3.8. Let A ∈ Cn×n with Ind(A) = k and rankAk+1 = rankAk = r. Then

the unique minimal P-norm least squares solution x̂ = (x̂1, . . . , x̂n)T of the system (3.1) is

given by

x̂i =

∑
β∈Jr, n{i}

∣∣∣∣
(
Ak+1

. i (f)
)β

β

∣∣∣∣
∑

β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
∀i = 1, n, (3.5)

where f = Aky.

Proof. Representing the Drazin inverse by (2.21) and by virtue of Theorem 3.6, we have

x̂ =




x̂1

. . .

x̂n


 = ADy =

1

dr (Ak+1)




n∑
s=1

d1sys

. . .
n∑

s=1
dnsys




.
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Therefore,

x̂i =
1

dr (Ak+1)

n∑

s=1

∑

β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s

))β

β

∣∣∣∣ · ys =

=
1

dr (Ak+1)

∑

β∈Jr, n{i}

n∑

s=1

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s

))β

β

∣∣∣∣ · ys =

=
1

dr (Ak+1)

∑

β∈Jr, n{i}

n∑

s=1

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s · ys

))β

β

∣∣∣∣.

From this (3.5) follows immediately. If we shall present a system of linear equations as,

xA = y, (3.6)

where A ∈ Cn×n with Ind(A) = k and rankAk+1 = rankAk = r, then by using

the Drazin inverse determinantal representation (2.20) we have the following analog of

Cramer’s rule for the Drazin inverse solution of (3.6):

x̂i =

∑
α∈Ir, n{i}

∣∣∣
(
Ak+1

i . (g)
)α

α

∣∣∣
∑

α∈Ir,n

∣∣(Ak+1)
α
α

∣∣ , ∀i = 1, n,

where g = yAk.

3.3. Cramer’s Rule for the W-Weighted Drazin Inverse Solution

Consider restricted linear equations

WAWx = y, (3.7)

where A ∈ Cm×n, W ∈ Cn×m, k1 = Ind(AW), k2 = Ind(WA) with y ∈ R((WA)k2)

and rank(WA)k2 = rank(AW)k1 = r.

In [31], Wei has showed that there exists an unique solution Ad,Wy of the linear equa-

tions (3.7) and given a Cramer rule for the W-weighted Drazin inverse solution of (3.7) by

the following theorem.

Theorem 3.9. Let A, W be the same as in (3.7). Suppose that U ∈ C
n×(n−r)
n−r and V∗ ∈

C
m×(m−r)
m−r be matrices whose columns form bases for N ((WA)k2) and N ((AW)k1), re-

spectively. Then the unique W-weighted Drazin inverse solution x = (x1, ..., xm of (3.7)

satisfies

xi = det

(
WAW(i → y) U

V(i → 0) 0

)/
det

(
WAW U

V 0

)

where i = 1, m.
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Let k = max{k1, k2}. Denote f = (AW)kA · y. Then by Theorem 2.37 using the

determinantal representation (2.36) of the W-weighted Drazin inverse Ad,W , we evidently

obtain the following Cramer’s rule of the W-weighted Drazin inverse solution of (3.7),

xi =

∑
β∈Jr, m{i}

∣∣∣
(
(AW)k+2

. i (f)
)

β
β

∣∣∣

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
, (3.8)

where i = 1, m.

Remark 3.10. Note that for (3.8) unlike Theorem 3.9, we do not need auxiliary matrices

U and V.

3.4. Examples

1. Let us consider the system of linear equations.





2x1 − 5x3 + 4x4 = 1,

7x1 − 4x2 − 9x3 + 1.5x4 = 2,

3x1 − 4x2 + 7x3 − 6.5x4 = 3,

x1 − 4x2 + 12x3 − 10.5x4 = 1.

(3.9)

The coefficient matrix of the system is A =




2 0 −5 4
7 −4 −9 1.5

3 −4 7 −6.5
1 −4 12 −10.5


. The rank of A is

equal to 3. We have

A∗ =




2 7 3 1

0 −4 −4 −4
−5 −9 7 12

4 1.5 −6.5 −10.5


 , A∗A =




63 −44 −40 −11.5

−44 48 −40 62
−40 −40 299 −205

−11.5 62 −205 170.75


 .

At first we obtain entries of A+ by (2.10):

d3(A
∗A) =

∣∣∣∣∣∣

63 −44 −40

−44 48 −40
−40 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 −44 −11.5

−44 48 62
−11.5 62 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

63 −40 −11.5

−40 299 −205
−11.5 −205 170.75

∣∣∣∣∣∣
+

∣∣∣∣∣∣

48 −40 62

−40 299 −205
62 −205 170.75

∣∣∣∣∣∣
= 102060,

l11 =

∣∣∣∣∣∣

2 −44 −40
0 48 −40

−5 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2 −44 −11.5
0 48 62

4 62 170.75

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2 −40 −11.5
−5 299 −205

4 −205 170.75

∣∣∣∣∣∣
=

= 25779,
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and so forth. Continuing in the same way, we get

A+ =
1

102060




25779 −4905 20742 −5037
−3840 −2880 −4800 −960

28350 −17010 22680 −5670
39558 −18810 26484 −13074


 .

Now we obtain the least squares solution of the system (3.9) by the matrix method.

x0 =




x0
1

x0
2

x0
3

x0
4


 =

1

102060




25779 −4905 20742 −5037

−3840 −2880 −4800 −960
28350 −17010 22680 −5670

39558 −18810 26484 −13074


 ·




1

2
3

1


 =

=
1

102060




73158
−24960

56700
68316


 =




12193
17010
− 416

1071
5
9

5693
8505




Next we get the least squares solution with minimum norm of the system (3.9) by the

Cramer rule (3.3), where

f =




2 7 3 1

0 −4 −4 −4
−5 −9 7 12

4 1.5 −6.5 −10.5


 ·




1

2
3

1


 =




26

−24
10

−23


 .

Thus we have

x0
1 =

1

102060




∣∣∣∣∣∣

26 −44 −40

−24 48 −40
10 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

26 −44 −11.5

−24 48 62
−23 62 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

26 −40 −11.5
10 299 −205
23 −205 170.75

∣∣∣∣∣∣


 =

73158

102060
=

12193

17010
;

x0
2 =

1

102060




∣∣∣∣∣∣

63 26 −40

−44 −24 −40
−40 10 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 26 −11.5

−44 −24 62
−11.5 −23 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

−24 −40 62
10 299 −205
−23 −205 170.75

∣∣∣∣∣∣


 =

−24960

102060
= −

416

1071
;

x0
3 =

1

102060




∣∣∣∣∣∣

63 −44 26

−44 48 −24
−40 −40 10

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 26 −11.5

−40 10 −205
−11.5 −23 170.75

∣∣∣∣∣∣
+
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+

∣∣∣∣∣∣

48 −24 62
−40 10 −205

62 −23 170.75

∣∣∣∣∣∣


 =

56700

102060
=

5

9
;

x0
4 =

1

102060




∣∣∣∣∣∣

63 −44 26
−44 48 −24

−11.5 62 −23

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 −40 26
−40 299 10

−11.5 −205 −23

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

48 −40 −24
−40 299 10

62 −205 −23

∣∣∣∣∣∣


 =

68316

102060
=

5693

8505
.

2. Let us consider the following system of linear equations.




x1 − x2 + x3 + x4 = 1,

x2 − x3 + x4 = 2,

x1 − x2 + x3 + 2x4 = 3,

x1 − x2 + x3 + x4 = 1.

(3.10)

The coefficient matrix of the system is the matrix A =




1 −1 1 1

0 1 −1 1
1 −1 1 2

1 −1 1 1


. It is easy to

verify the following:

A2 =




3 −4 4 3

0 1 −1 0
4 −5 5 4

3 −4 4 3


 , A3 =




10 −14 14 10

−1 2 −2 −1
13 −18 18 13

10 −14 14 10


 ,

and rankA = 3, rankA2 = rankA3 = 2. This implies k = Ind(A) = 2. We obtain

entries of AD by (2.21).

d2(A
3) =

∣∣∣∣
10 −14
−1 2

∣∣∣∣ +
∣∣∣∣

10 14
13 18

∣∣∣∣+
∣∣∣∣

10 10
10 10

∣∣∣∣

+

∣∣∣∣
2 −2

−18 18

∣∣∣∣+
∣∣∣∣

2 −1
−14 10

∣∣∣∣ +
∣∣∣∣

18 13
14 10

∣∣∣∣ = 8,

d11 =

∣∣∣∣
3 −14
0 2

∣∣∣∣+
∣∣∣∣

3 14
4 18

∣∣∣∣+
∣∣∣∣

3 10
3 10

∣∣∣∣ = 4,

and so forth.

Continuing in the same way, we get AD =




0.5 0.5 −0.5 0.5

1.75 2.5 −2.5 1.75
1.25 1.5 −1.5 1.25

0.5 0.5 −0.5 0.5


 . Now we

obtain the Drazin inverse solution x̂ of the system (3.10) by the Cramer rule (3.5), where

g = A2y =




3 −4 4 3
0 1 −1 0

4 −5 5 4
3 −4 4 3


 ·




1
2

3
1


 =




10
−1

13
10


 .
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Thus we have

x̂1 =
1

8

(∣∣∣∣
10 −14
−1 2

∣∣∣∣ +
∣∣∣∣

10 14
13 18

∣∣∣∣ +
∣∣∣∣

10 10
10 10

∣∣∣∣
)

=
1

2
,

x̂2 =
1

8

(∣∣∣∣
10 10
−1 −1

∣∣∣∣+
∣∣∣∣
−1 −2
13 18

∣∣∣∣+
∣∣∣∣
−1 −1
10 10

∣∣∣∣
)

= 1,

x̂3 =
1

8

(∣∣∣∣
10 10

13 13

∣∣∣∣ +
∣∣∣∣

2 −1

−18 13

∣∣∣∣ +
∣∣∣∣

13 13

10 10

∣∣∣∣
)

= 1,

x̂4 =
1

8

(∣∣∣∣
10 10

10 10

∣∣∣∣+
∣∣∣∣

2 −1

−14 10

∣∣∣∣ +
∣∣∣∣

18 13

14 10

∣∣∣∣
)

=
1

2
.

4. Cramer’s Rule of the Generalized Inverse Solutions of Some

Matrix Equations

Matrix equation is one of the important study fields of linear algebra. Linear matrix

equations, such as

AX = C, (4.1)

XB = D, (4.2)

and

AXB = D, (4.3)

play an important role in linear system theory therefore a large number of papers have

presented several methods for solving these matrix equations [45, 46, 47, 48, 49]. In [50],

Khatri and Mitra studied the Hermitian solutions to the matrix equations (4.1) and (4.3) over

the complex field and the system of the equations (4.1) and (4.2). Wang, in [51, 52], and Li

and Wu, in [53] studied the bisymmetric, symmetric and skew-antisymmetric least squares

solution to this system over the quaternion skew field. Extreme ranks of real matrices in

least squares solution of the equation (4.3) was investigated in [54] over the complex field

and in [55] over the quaternion skew field.

As we know, the Cramer rule gives an explicit expression for the solution of nonsingular

linear equations. Robinson’s result ( [33]) aroused great interest in finding determinantal

representations of a least squares solution as some analogs of Cramer’s rule for the matrix

equations (for example, [56, 57, 58]). Cramer’s rule for solutions of the restricted matrix

equations (4.1), (4.2) and (4.3) was established in [59, 60, 61].

In this section, we obtain analogs of the Cramer rule for generalized inverse solutions

of the aforementioned equations without any restriction.

We shall show numerical examples to illustrate the main results as well.

4.1. Cramer’s Rule for the Minimum Norm Least Squares Solution of Some

Matrix Equations

Definition 4.1. Consider a matrix equation

AX = B, (4.4)
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where A ∈ C
m×n, B ∈ C

m×s are given, X ∈ C
n×s is unknown. Suppose

S1 = {X|X ∈ C
n×s, ‖AX−B‖ = min}.

Then matrices X ∈ Cn×s such that X ∈ S1 are called least squares solutions of the matrix

equation (4.4). If XLS = minX∈S1‖X‖, then XLS is called the minimum norm least

squares solution of (4.4).

If the equation (4.4) has no precision solutions, then XLS is its optimal approximation.

The following important proposition is well-known.

Lemma 4.2. ([38]) The least squares solutions of (4.4) are

X = A+B + (In − A+A)C,

where A ∈ Cm×n, B ∈ Cm×s are given, and C ∈ Cn×s is an arbitrary matrix. The least

squares minimum norm solution is XLS = A+B.

We denote A∗B =: B̂ = (b̂ij) ∈ C
n×s.

Theorem 4.3. (i) If rankA = r ≤ m < n, then we have for the minimum norm least

squares solution XLS = (xij) ∈ C
n×s of (4.4) for all i = 1, n, j = 1, s

xij =

∑
β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
b̂.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A)
β
β

∣∣∣
. (4.5)

(ii) If rankA = n, then for all i = 1, n, j = 1, s we have

xi j =
det(A∗A). i

(
b̂.j

)

det(A∗A)
, (4.6)

where b̂.j is the jth column of B̂ for all j = 1, s.

Proof. i) If rankA = r ≤ m < n, then by Theorem 2.9 we can represent A+ by (2.5).

Therefore, we obtain for all i = 1, n, j = 1, s

xij =

m∑

k=1

a+
ikbkj =

m∑

k=1

∑
β∈Jr, n{i}

∣∣∣((A∗A) . i (a∗.k)) β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
· bkj =

∑
β∈Jr, n{i}

∑m
k=1

∣∣∣((A∗A) . i (a
∗
.k))

β
β

∣∣∣ · bkj

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
.
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Since
∑
k

a∗. kbkj =




∑
k

a∗1kbkj

∑
k

a∗2kbkj

...∑
k

a∗nkbkj




= b̂.j , then it follows (4.5).

(ii) The proof of this case is similarly to that of (i) by using Corollary 2.3.

Definition 4.4. Consider a matrix equation

XA = B, (4.7)

where A ∈ C
m×n, B ∈ C

s×n are given, X ∈ C
s×m is unknown. Suppose

S2 = {X|X ∈ C
s×m, ‖XA− B‖ = min}.

Then matrices X ∈ Cs×m such that X ∈ S2 are called least squares solutions of the

matrix equation (4.7). If XLS = minX∈S2‖X‖, then XLS is called the minimum norm

least squares solution of (4.7).

The following lemma can be obtained by analogy to Lemma 4.2.

Lemma 4.5. The least squares solutions of (4.7) are

X = BA+ + C(Im − AA+),

where A ∈ Cm×n, B ∈ Cs×n are given, and C ∈ Cs×m is an arbitrary matrix. The

minimum norm least squares solution is XLS = BA+.

We denote BA∗ =: B̌ = (b̌ij) ∈ Cs×m.

Theorem 4.6. (i) If rankA = r ≤ n < m, then we have for the minimum norm least

squares solution XLS = (xij) ∈ Cs×m of (4.7) for all i = 1, s, j = 1, m

xij =

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j .

(
b̌i .

))
α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

. (4.8)

(ii) If rankA = m, then for all i = 1, s, j = 1, m we have

xi j =
det(AA∗)j.

(
b̌i .

)

det(AA∗)
, (4.9)

where b̌i. is the ith row of B̌ for all i = 1, s.

Proof. (i) If rankA = r ≤ n < m, then by Theorem 2.9 we can represent A+ by (2.6).

Therefore, for all i = 1, s, j = 1, m we obtain

xij =

n∑

k=1

bika
+
kj =

n∑

k=1

bik ·

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j . (a

∗
k .)
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

=
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∑n
k=1 bik

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j . (a

∗
k .)
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

Since for all i = 1, s

∑

k

bika
∗
k . =

(∑
k

bika
∗
k1

∑
k

bika
∗
k2 · · ·

∑
k

bika
∗
km

)
= b̌i.,

then it follows (4.8).

(ii) The proof of this case is similarly to that of (i) by using Corollary 2.3.

Definition 4.7. Consider a matrix equation

AXB = D, (4.10)

where A ∈ C
m×n
r1

, B ∈ C
p×q
r2 , D ∈ C

m×q are given, X ∈ C
n×p is unknown. Suppose

S3 = {X|X ∈ C
n×p, ‖AXB− D‖ = min}.

Then matrices X ∈ Cn×p such that X ∈ S3 are called least squares solutions of the matrix

equation (4.10). If XLS = minX∈S3‖X‖, then XLS is called the minimum norm least

squares solution of (4.10).

The following important proposition is well-known.

Lemma 4.8. ([36]) The least squares solutions of (4.10) are

X = A+DB+ + (In −A+A)V + W(Ip − BB+),

where A ∈ C
m×n
r1

, B ∈ C
p×q
r2 , D ∈ C

m×q are given, and {V, W} ⊂ C
n×p are arbitrary

quaternion matrices. The minimum norm least squares solution is XLS = A+DB+.

We denote D̃ = A∗DB∗.

Theorem 4.9. (i) If rankA = r1 < n and rankB = r2 < p, then for the minimum

norm least squares solution XLS = (xij) ∈ Cn×p of (4.10) we have

xij =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗)αα|
, (4.11)

or

xij =

∑
α∈Ir2,p{j}

∣∣∣(BB∗) j .

(
d A

i .

)
α
α

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗)αα|
, (4.12)
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where

dB

. j =




∑

α∈Ir2,p{j}

∣∣∣(BB∗)j.

(
d̃1.

)
α
α

∣∣∣, ...,
∑

α∈Ir2,p{j}

∣∣∣(BB∗)j.

(
d̃n.

)
α
α

∣∣∣




T

, (4.13)

dA

i . =




∑

β∈Jr1,n{i}

∣∣∣(A∗A).i

(
d̃.1

)
β
β

∣∣∣, ...,
∑

α∈Ir1,n{i}

∣∣∣(A∗A).i

(
d̃. p

)
β
β

∣∣∣


 (4.14)

are the column-vector and the row-vector, respectively. d̃i . is the i-th row of D̃ for

all i = 1, n, and d̃. j is the j-th column of D̃ for all j = 1, p.

(ii) If rankA = n and rankB = p, then for the least squares solution XLS = (xij) ∈

C
n×p of (4.10) we have for all i = 1, n, j = 1, p,

xi j =
det
(
(A∗A). i

(
dB

.j

))

det(A∗A) · det(BB∗)
, (4.15)

or

xi j =
det
(
(BB∗)j.

(
dA

i .

))

det(A∗A) · det(BB∗)
, (4.16)

where

dB

.j :=
[
det
(
(BB∗)j.

(
d̃1 .

))
, . . . , det

(
(BB∗)j.

(
d̃n .

))]T
, (4.17)

dA

i . :=
[
det
(
(A∗A). i

(
d̃.1

))
, . . . , det

(
(A∗A). i

(
d̃.p

))]
(4.18)

are respectively the column-vector and the row-vector.

(iii) If rankA = n and rankB = r2 < p, then for the least squares solution XLS =
(xij) ∈ Cn×p of (4.10) we have

xij =
det
(
(A∗A). i

(
dB

.j

))

det(A∗A)
∑

α∈Ir2,p

|(BB∗)α
α|

, (4.19)

or

xij =

∑
α∈Ir2,p{j}

∣∣∣(BB∗) j .

(
d A

i .

)
α
α

∣∣∣

det(A∗A)
∑

α∈Ir2,p

|(BB∗)α
α|

, (4.20)

where dB
. j is (4.13) and dA

i . is (4.18).

(iiii) If rankA = r1 < m and rankB = p, then for the least squares solution XLS =

(xij) ∈ C
n×p of (4.10) we have

xi j =
det
(
(BB∗)j.

(
dA

i .

))

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣ · det(BB∗)
, (4.21)
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or

xi j =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)ββ

∣∣∣ det(BB∗)
, (4.22)

where dB

. j is (4.17) and dA

i . is (4.14).

Proof. (i) If A ∈ C
m×n
r1

, B ∈ C
p×q
r2 and r1 < n, r2 < p, then by Theorem 2.9 the Moore-

Penrose inverses A+ =
(
a+

ij

)
∈ C

n×m and B+ =
(
b+
ij

)
∈ C

q×p possess the following

determinantal representations respectively,

a+
ij =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
a∗.j

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
,

b+
ij =

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
i. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

. (4.23)

Since by Theorem 4.8 XLS = A+DB+, then an entry of XLS = (xij) is

xij =

q∑

s=1

(
m∑

k=1

a+
ikdks

)
b+
sj. (4.24)

Denote by d̂.s the sth column of A∗D =: D̂ = (d̂ij) ∈ Cn×q for all s = 1, q. It follows

from
∑
k

a∗. kdks = d̂. s that

m∑

k=1

a+
ikdks =

m∑

k=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (a
∗
.k) β

β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
· dks =

∑
β∈Jr1, n{i}

m∑
k=1

∣∣∣(A∗A) . i (a∗.k) β
β

∣∣∣ · dks

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
=

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
(4.25)

Suppose es. and e. s are respectively the unit row-vector and the unit column-vector whose

components are 0, except the sth components, which are 1. Substituting (4.25) and (4.23)

in (4.24), we obtain

xij =

q∑

s=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
s. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

.
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Since

d̂. s =

n∑

l=1

e. ld̂ls, b∗
s. =

p∑

t=1

b∗stet.,

q∑

s=1

d̂lsb
∗
st = d̃lt, (4.26)

then we have

xij =

q∑
s=1

p∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣d̂lsb
∗
st

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

=

p∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣ d̃lt

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

. (4.27)

Denote by

dA

it :=

∑

β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̃. t

)
β
β

∣∣∣ =

n∑

l=1

∑

β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣d̃lt

the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

ip) for all t = 1, p. Substituting it in

(4.27), we have

xij =

p∑
t=1

dA
it

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since
p∑

t=1
dA

it et. = dA

i . , then it follows (4.12).

If we denote by

dB

lj :=

p∑

t=1

d̃lt

∑

α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α| =

∑

α∈Ir2,p{j}

∣∣∣(BB∗)j . (d̃l.)
α
α

∣∣∣ (4.28)

the l-th component of a column-vector dB
. j = (dB

1j, ..., d
B
jn)

T for all l = 1, n and substitute

it in (4.27), we obtain

xij =

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣ dB

lj

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since
n∑

l=1

e.ld
B

lj = dB
. j , then it follows (4.11).
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(ii) If rankA = n and rankB = p, then by Corollary 2.3 A+ = (A∗A)−1
A∗ and

B+ = B∗ (BB∗)−1
. Therefore, we obtain

XLS = (A∗A)−1A∗DB∗ (BB∗)−1 =

=




x11 x12 . . . x1p

x21 x22 . . . x2p

. . . . . . . . . . . .

xn1 xn2 . . . xnp


 = 1

det(A∗A)




LA
11 LA

21 . . . LA
n1

LA
12 LA

22 . . . LA
n2

. . . . . . . . . . . .

LA
1n LA

2n . . . LA
nn


×

×




d̃11 d̃12 . . . d̃1m

d̃21 d̃22 . . . d̃2m

. . . . . . . . . . . .

d̃n1 d̃n2 . . . d̃nm




1
det(BB∗)




RB
11 RB

21 . . . RB
p1

RB
12 RB

22 . . . RB
p2

. . . . . . . . . . . .

RB
1p RB

2p . . . RB
pp


 ,

where d̃ij is ij-th entry of the matrix D̃, LA
ij is the ij-th cofactor of (A∗A) for all i, j = 1, n

and RB
i j is the ij-th cofactor of (BB∗) for all i, j = 1, p. This implies

xij =

n∑
k=1

LA

ki

(
p∑

s=1
d̃ ksR

B
js

)

det(A∗A) · det(BB∗)
, (4.29)

for all i = 1, n, j = 1, p. We obtain the sum in parentheses and denote it as follows

p∑

s=1

d̃k sR
B

j s = det(BB∗)j.

(
d̃k .

)
:= dB

k j,

where d̃k . is the k-th row-vector of D̃ for all k = 1, n. Suppose dB
. j :=

(
dB

1 j, . . . , d
B
nj

)T

is the column-vector for all j = 1, p. Reducing the sum
n∑

k=1

LA

kid
B

k j , we obtain an analog of

Cramer’s rule for (4.10) by (4.15).

Interchanging the order of summation in (4.29), we have

xij =

p∑
s=1

(
n∑

k=1

LA

kid̃ ks

)
RB

js

det(A∗A) · det(BB∗)
.

We obtain the sum in parentheses and denote it as follows

n∑

k=1

LA

kid̃k s = det(A∗A). i

(
d̃. s

)
=: dA

i s,

where d̃. s is the s-th column-vector of D̃ for all s = 1, p. Suppose dA
i . :=

(
dA

i 1, . . . , d
A
i p

)

is the row-vector for all i = 1, n. Reducing the sum
n∑

s=1
dA

i sR
B

js, we obtain another analog

of Cramer’s rule for the least squares solutions of (4.10) by (4.16).
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(iii) If A ∈ C
m×n
r1

, B ∈ C
p×q
r2 and r1 = n, r2 < p, then by Remark 2.12 and Theorem

2.9 the Moore-Penrose inverses A+ =
(
a+

ij

)
∈ Cn×m and B+ =

(
b+
ij

)
∈ Cq×p possess

the following determinantal representations respectively,

a+
ij =

det (A∗A) . i

(
a∗.j

)

det (A∗A)
,

b+
ij =

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
i. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

. (4.30)

Since by Theorem 4.8 XLS = A+DB+, then an entry of XLS = (xij) is (4.24). Denote

by d̂.s the s-th column of A∗D =: D̂ = (d̂ij) ∈ Cn×q for all s = 1, q. It follows from∑
k

a∗. kdks = d̂. s that

m∑

k=1

a+
ikdks =

m∑

k=1

det (A∗A) . i (a∗.k)

det (A∗A)
· dks =

det (A∗A) . i

(
d̂. s

)

det (A∗A)
(4.31)

Substituting (4.31) and (4.30) in (4.24), and using (4.26) we have

xij =

q∑

s=1

det (A∗A) . i

(
d̂. s

)

det (A∗A)

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
s. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

=

q∑
s=1

p∑
t=1

n∑
l=1

det (A∗A) . i (e. l)d̂lsb
∗
st

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

=

p∑
t=1

n∑
l=1

det (A∗A) . i (e. l) d̃lt

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

. (4.32)

If we substitute (4.28) in (4.32), then we get

xij =

n∑
l=1

det (A∗A) . i (e. l) dB

lj

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since again
n∑

l=1

e.ld
B

lj = dB

. j , then it follows (4.19), where dB

. j is (4.13).

If we denote by

dA

it :=
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n∑

l=1

det (A∗A) . i

(
d̃. t

)
=

n∑

l=1

det (A∗A) . i (e. l) d̃lt

the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

ip) for all t = 1, p and substitute it in

(4.32), we obtain

xij =

p∑
t=1

dA
it

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since again
p∑

t=1
dA

it et. = dA

i . , then it follows (4.20), where dA

i . is (4.18).

(iiii) The proof is similar to the proof of (iii).

4.2. Cramer’s Rule of the Drazin Inverse Solutions of Some Matrix

Equations

Consider a matrix equation

AX = B, (4.33)

where A ∈ C
n×n with IndA = k, B ∈ C

n×m are given and X ∈ C
n×m is unknown.

Theorem 4.10. ([62], Theorem 1) If the range space R(B) ⊂ R(Ak), then the matrix

equation (4.33) with constrain R(X) ⊂ R(Ak) has a unique solution

X = ADB.

We denote AkB =: B̂ = (b̂ij) ∈ C
n×m.

Theorem 4.11. If rankAk+1 = rankAk = r ≤ n for A ∈ Cn×n, then for the Drazin

inverse solution X = ADB = (xij) ∈ C
n×m of (4.33) we have for all i = 1, n, j = 1, m,

xij =

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
b̂.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
. (4.34)

Proof. By Theorem 2.29 we can represent AD by (2.21). Therefore, we obtain for all

i = 1, n, j = 1, m,

xij =

n∑

s=1

aD
isbsj =

n∑

s=1

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
a

(k)
.s

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
· bsj =

∑
β∈Jr, n{i}

∑n
s=1

∣∣∣
(
Ak+1

. i

(
a

(k)
.s

))
β
β

∣∣∣ · bsj

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
.
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Since
∑
s

a
(k)
.s bsj =




∑
s

a
(k)
1s bsj

∑
s

a
(k)
2s bsj

...∑
s

a
(k)
ns bsj




= b̂.j , then it follows (4.34).

Consider a matrix equation

XA = B, (4.35)

where A ∈ C
m×m with IndA = k, B ∈ C

n×m are given and X ∈ C
n×m is unknown.

Theorem 4.12. ([62], Theorem 2) If the null space N (B) ⊃ N (Ak), then the matrix

equation (4.35) with constrain N (X) ⊃ N (Ak) has a unique solution

X = BAD.

We denote BAk =: B̌ = (b̌ij) ∈ Cn×m.

Theorem 4.13. If rankAk+1 = rankAk = r ≤ m for A ∈ C
m×m, then for the Drazin

inverse solution X = BAD = (xij) ∈ Cn×m of (4.35), we have for all i = 1, n, j = 1, m,

xij =

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
b̌i .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

. (4.36)

Proof. By Theorem 2.29 we can represent AD by (2.20). Therefore, we obtain for all

i = 1, n, j = 1, m,

xij =

m∑

s=1

bisa
D
sj =

m∑

s=1

bis ·

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
s .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

=

∑m
s=1 bik

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
s .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

Since for all i = 1, n

∑

s

bisa
(k)
s . =

(∑
s

bisa
(k)
s1

∑
s

bisa
(k)
s2 · · ·

∑
s

bisa
(k)
sm

)
= b̌i.,

then it follows (4.36).

Consider a matrix equation

AXB = D, (4.37)

where A ∈ C
n×n with IndA = k1, B ∈ C

m×m with IndB = k2 and D ∈ C
n×m are

given, and X ∈ Cn×m is unknown.
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Theorem 4.14. ([62], Theorem 3) If R(D) ⊂ R(Ak1) and N (D) ⊃ N (Bk2), k =
max{k1, k2}, then the matrix equation (4.37) with constrain R(X) ⊂ R(Ak) and N (X) ⊃

N (Bk) has a unique solution

X = ADDBD.

We denote Ak1DBk2 =: D̃ = (d̃ij) ∈ C
n×m.

Theorem 4.15. If rankAk1+1 = rankAk1 = r1 ≤ n for A ∈ C
n×n, and rankBk2+1 =

rankBk2 = r2 ≤ m for B ∈ Cm×m, then for the Drazin inverse solution X =

ADDBD =: (xij) ∈ C
n×m of (4.37) we have

xij =

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.38)

or

xij =

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j .

(
d A

i .

)
α
α

∣∣∣

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.39)

where

dB

. j =




∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j.

(
d̃1.

)
α
α

∣∣∣, ...,
∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j.

(
d̃n.

)
α
α

∣∣∣




T

, (4.40)

dA

i . =




∑

β∈Jr1,n{i}

∣∣∣Ak1+1
.i

(
d̃.1

)
β
β

∣∣∣, ...,
∑

α∈Ir1,n{i}

∣∣∣Ak1+1
.i

(
d̃. m

)
β
β

∣∣∣




are the column-vector and the row-vector. d̃i. and d̃.j are respectively the i-th row and the

j-th column of D̃ for all i = 1, n, j = 1, m.

Proof. By (2.21) and (2.20) the Drazin inverses AD =
(
aD

ij

)
∈ C

n×n and BD =
(
bD
ij

)
∈

Cm×m possess the following determinantal representations, respectively,

aD
ij =

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
a

(k1)
.j

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1)
β
β

∣∣∣
,

bD
ij =

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (b

(k2)
i. ) α

α

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

. (4.41)

Then an entry of the Drazin inverse solution X = ADDBD =: (xij) ∈ Cn×m is

Complimentary Contributor Copy



120 Ivan I. Kyrchei

xij =
m∑

s=1

(
n∑

t=1

aD
it dts

)
bD
sj. (4.42)

Denote by d̂.s the s-th column of AkD =: D̂ = (d̂ij) ∈ Cn×m for all s = 1, m. It follows

from
∑
t

aD
. tdts = d̂. s that

n∑

t=1

aD
it dts =

n∑

t=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
a

(k1)
.t

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
· dts =

∑
β∈Jr1, n{i}

n∑
t=1

∣∣∣Ak1+1
. i

(
a

(k1)
.t

)
β
β

∣∣∣ · dts

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
=

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
(4.43)

Substituting (4.43) and (4.41) in (4.42), we obtain

xij =

m∑

s=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (b

(k2)
s. ) α

α

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Suppose es. and e. s are respectively the unit row-vector and the unit column-vector whose

components are 0, except the sth components, which are 1. Since

d̂. s =
n∑

l=1

e. ld̂ls, b(k2)
s. =

m∑

t=1

b
(k2)
st et.,

m∑

s=1

d̂lsb
(k2)
st = d̃lt,

then we have

xij =

m∑
s=1

m∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣d̂lsb
(k2)
st

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

=

m∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣ d̃lt

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

. (4.44)

Denote by

dA

it :=

∑

β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̃. t

)
β
β

∣∣∣ =

n∑

l=1

∑

β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣d̃lt
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the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

im) for all t = 1, m. Substituting it in

(4.44), we obtain

xij =

m∑
t=1

dA
it

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Since
m∑

t=1
dA

it et. = dA
i . , then it follows (4.39).

If we denote by

dB

lj :=

m∑

t=1

d̃lt

∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣ =
∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j . (d̃l.)

α
α

∣∣∣

the l-th component of a column-vector dB
. j = (dB

1j, ..., d
B
jn)

T for all l = 1, n and substitute

it in (4.44), we obtain

xij =

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣ dB

lj

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Since
n∑

l=1

e.ld
B

lj = dB
. j , then it follows (4.38).

4.3. Examples

In this subsection, we give an example to illustrate results obtained in the section.

1. Let us consider the matrix equation

AXB = D, (4.45)

where

A =




1 i i

i −1 −1
0 1 0
−1 0 −i


 , B =

(
i 1 −i

−1 i 1

)
, D =




1 i 1

i 0 1
1 i 0
0 1 i


 .

Since rankA = 2 and rankB = 1, then we have the case (ii) of Theorem 4.9. We shall

find the least squares solution of (4.45) by (4.11). Then we have

A∗A =




3 2i 3i

−2i 3 2

−3i 2 3


 , BB∗ =

(
3 −3i

3i 3

)
, D̃ = A∗DB∗ =




1 −i

−i −1

−i −1


 ,
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and
∑

α∈I1,2

|(BB∗) α
α| = 3 + 3 = 6,

∑

β∈J2,3

∣∣∣(A∗A) β
β

∣∣∣ = det

(
3 2i

−2i 3

)
+ det

(
3 2

2 3

)
+ det

(
3 3i

−3i 3

)
= 10.

By (4.17), we can get

dB

.1 =




1

−i

−i


 , dB

.2 =



−i

−1
−1


 .

Since (A∗A) . 1

(
d B

.1

)
=




1 2i 3i

−i 3 2
−i 2 3


, then finally we obtain

x11 =

∑
β∈J2, 3{i}

∣∣∣(A∗A) . 1

(
d B

. 1

) β
β

∣∣∣

∑
β∈J2,3

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈I1,2

|(BB∗)α
α|

=

det

(
1 2i

−i 3

)
+ det

(
1 3i

−i 3

)

60
= −

1

60
.

Similarly,

x12 =

det

(
−i 2i

−1 3

)
+ det

(
−i 3i

−1 3

)

60
= −

i

60
,

x21 =

det

(
3 1

−2i −i

)
+ det

(
−i 2
−i 3

)

60
= −

2i

60
,

x22 =

det

(
3 −i

−2i −1

)
+ det

(
−1 2
−1 3

)

60
= −

2

60
,

x31 =

det

(
3 1

−3i −i

)
+ det

(
3 −i

2 −i

)

60
= −

i

60
,

x32 =

det

(
3 −i

−3i −1

)
+ det

(
3 −1

2 −1

)

60
= −

1

60
.

2. Let us consider the matrix equation (4.45), where

A =




2 0 0
−i i i

−i −i −i


 , B =




1 −1 1
i −i i

−1 1 2


 , D =




1 i 1
i 0 1

1 i 0


 .

We shall find the Drazin inverse solution of (4.45) by (4.11). We obtain

A2 =




4 0 0

2− 2i 0 0
−2 − 2i 0 0


 , A3 =




8 0 0

4 − 4i 0 0
−4 − 4i 0 0


 ,
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B2 =




−i i 3 − i

1 −1 1 + 3i

−3 + i 3 − i 3 + i


 .

Since rankA = 2 and rankA2 = rankA2 = 1, then k1 = IndA = 2 and r1 = 1. Since

rankB = rankB2 = 2, then k2 = Ind B = 1 and r2 = 2. Then we have

D̃ = A2DB =




−4 4 8
−2 + 2i 2 − 2i 4 − 4i

2 + 2i −2 − 2i −4 − 4i


 ,

and
∑

β∈J1,3

∣∣∣
(
A3
) β

β

∣∣∣ = 8 + 0 + 0 = 8,

∑
α∈I2, 3

∣∣(B2
)

α
α

∣∣ =

det

(
−i i

1 −1

)
+ det

(
−1 1 + 3i

3 − i 3 + i

)
+ det

(
−i 3 − i

−3 + i 3 + i

)
=

0 + (−9− 9i) + (9 − 9i) = −18i.

By (4.13), we can get

dB

.1 =




12− 12i

−12i

−12


 , dB

.2 =



−12 + 12i

12i

12


 , dB

.3 =




8
−12 − 12i

−12 + 12i


 .

Since A3
.1

(
d B

. 1

)
=




12− 12i 0 0
−12i 0 0

−12 0 0


, then finally we obtain

x11 =

∑
β∈J1,3{1}

∣∣∣A3
. 1

(
d B

. 1

) β
β

∣∣∣

∑
β∈J1,3

∣∣∣(A3)ββ

∣∣∣
∑

α∈I2,3

|(B2)α
α|

=
12 − 12i

8 · (−18i)
=

1 + i

12
.

Similarly,

x12 =
−12 + 12i

8 · (−18i)
=

−1 − i

12
, x13 =

8

8 · (−18i)
=

i

18
,

x21 =
−12i

8 · (−18i)
=

1

12
, x22 =

12i

8 · (−18i)
= −

1

12
, x23 =

−12 − 12i

8 · (−18i)
=

1 − i

12
,

x31 =
12

8 · (−18i)
= −

i

12
, x32 =

−12

8 · (−18i)
=

i

12
. x33 =

−12 + 12i

8 · (−18i)
=

−1 − i

12
.

Then

X =




1+i
12

−1−i
12

i
18

1
12 − 1

12
1−i
12

− i
12

i
12

−1−i
12




is the Drazin inverse solution of (4.45).
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5. An Application of the Determinantal Representations of the

Drazin Inverse to Some Differential Matrix Equations

In this section we demonstrate an application of the determinantal representations (2.20)

and (2.21) of the Drazin inverse to solutions of the following differential matrix equations,

X′ + AX = B and X′ + XA = B, where the matrix A is singular.

Consider the matrix differential equation

X′ + AX = B (5.1)

where A ∈ C
n×n, B ∈ C

n×n are given, X ∈ C
n×n is unknown. It’s well-known that the

general solution of (5.1) is found to be

X(t) = exp−At

(∫
expAt dt

)
B

If A is invertible, then ∫
expAt dt = A−1 expAt +G,

where G is an arbitrary n× n matrix. If A is singular, then the following theorem gives an

answer.

Theorem 5.1. ([63], Theorem 1) If A has index k, then
∫

expAt dt = AD expAt +(I −AAD)t

[
I +

A

2
t +

A2

3!
t2 + ... +

Ak−1

k!
tk−1

]
+ G.

Using Theorem 5.1 and the power series expansion of exp−At, we get an explicit form

for a general solution of (5.1)

X(t) ={
AD + (I −AAD)t

(
I − A

2 t + A
2

3! t2 − ...(−1)k−1 A
k−1

k! tk−1
)

+ G
}

B.

If we put G = 0, then we obtain the following partial solution of (5.1),

X(t) = ADB + (B−ADAB)t− 1
2(AB−ADA2B)t2 + ...

(−1)k−1

k! (Ak−1B− ADAkB)tk.
(5.2)

Denote AlB =: B̂(l) = (̂b
(l)
ij ) ∈ C

n×n for all l = 1, 2k.

Theorem 5.2. The partial solution (5.2), X(t) = (xij), possess the following determinantal

representation,

xij =

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

+


bij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k+1)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 t

−1
2


b̂

(1)
ij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k+2)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 t2 + ...

(−1)k

k!


b̂

(k−1)
ij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(2k)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 tk

(5.3)
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for all i, j = 1, n.

Proof. Using the determinantal representation of the identity ADA (2.27), we obtain the

following determinantal representation of the matrix ADAmB := (yij),

yij =

n∑

s=1

pis

n∑

t=1

a
(m−1)
st btj =

∑

β∈Jr,n{i}

n∑
s=1

∣∣∣∣
(
Ak+1

. i

(
a.s

(k+1)
))β

β

∣∣∣∣ ·
n∑

t=1
a

(m−1)
st btj

∑
β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
=

∑

β∈Jr,n{i}

n∑
t=1

∣∣∣∣
(
Ak+1

. i

(
a.t

(k+m)
))β

β

∣∣∣∣ · btj

∑
β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
=

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
b̂

(k+m)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣

for all i, j = 1, n and m = 1, k. From this and the determinantal representation of the

Drazin inverse solution (4.34) and the identity (2.27) it follows (5.3).

Corollary 5.3. If IndA = 1, then the partial solution of (5.1),

X(t) = (xij) = AgB + (B− AgAB)t,

possess the following determinantal representation

xij =

∑
β∈Jr, n{i}

∣∣∣
(
A2

. i

(
b̂

(1)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A2) β
β

∣∣∣
+


bij −

∑
β∈Jr, n{i}

∣∣∣
(
A2

. i

(
b̂

(2)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A2) β
β

∣∣∣


 t. (5.4)

for all i, j = 1, n.

Consider the matrix differential equation

X′ + XA = B (5.5)

where A ∈ C
n×n, B ∈ C

n×n are given, X ∈ C
n×n is unknown. The general solution of

(5.5) is found to be

X(t) = B exp−At

(∫
expAt dt

)

If A is singular, then an explicit form for a general solution of (5.5) is

X(t) =

B
{
AD + (I −AAD)t

(
I − A

2 t + A
2

3! t2 + ...(−1)k−1 A
k−1

k! tk−1
)

+ G
}

.

If we put G = 0, then we obtain the following partial solution of (5.5),

X(t) = BAD + (B−BAAD)t − 1
2(BA −BA2AD)t2 + ...

(−1)k−1

k! (BAk−1 − BAkAD)tk.
(5.6)

Denote BAl =: B̌(l) = (b̌
(l)
ij ) ∈ Cn×n for all l = 1, 2k. Using the determinantal represen-

tation of the Drazin inverse solution (4.36), the group inverse (2.25) and the identity (2.26)

we evidently obtain the following theorem.
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Theorem 5.4. The partial solution (5.6), X(t) = (xij), possess the following determinantal

representation,

xij =

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k)
. i

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|

+


bij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k+1)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 t

−1
2


b̌

(1)
ij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k+2)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 t2 + ...

(−1)k

k!


b̌

(k−1)
ij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(2k)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 tk

for all i, j = 1, n.

Corollary 5.5. If IndA = 1, then the partial solution of (5.5),

X(t) = (xij) = BAg + (B− BAAg)t,

possess the following determinantal representation

xij =

∑
α∈Ir,n{j}

∣∣∣
(
A2

j .

(
b̂

(1)
i .

))
α
α

∣∣∣
∑

α∈Ir,n

|(A2) α
α|

+


bij −

∑
α∈Ir,n{j}

∣∣∣
(
A2

j .

(
b̂

(2)
i .

))
α
α

∣∣∣
∑

α∈Ir,n

|(A2) α
α|


 t.

for all i, j = 1, n.

5.1. Example

1. Let us consider the differential matrix equation

X′ + AX = B, (5.7)

where

A =




1 −1 1

i −i i

−1 1 2


 , B =




1 i 1

i 0 1
1 i 0


 .

Since rankA = rankA2 = 2, then k = IndA = 1 and r = 2. The matrix A is the group

inverse. We shall find the partial solution of (5.7) by (5.4). We have

A2 =




−i i 3 − i

1 −1 1 + 3i

−3 + i 3− i 3 + i


 , B̂(1) = AB =




2 − i 2i 0
1 + 2i −2 0

1 + i i 0


 ,

B̂(2) = A2B =




2− 2i 2 + 3i 0

2 + 2i −3 + 2i 0
1 + 5i −2 0


 .
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and ∑
α∈J2, 3

∣∣∣
(
A2
) β

β

∣∣∣ =

det

(
−i i

1 −1

)
+ det

(
−1 1 + 3i

3 − i 3 + i

)
+ det

(
−i 3 − i

−3 + i 3 + i

)
=

0 + (−9− 9i) + (9 − 9i) = −18i.

Since
(
A2
)

. 1

(
b̂

(1)
.1

)
=




2 − i i 3 − i

1 + 2i −1 1 + 3i

1 + i 3 − i 3 + i


 and

(
A2
)

. 1

(
b̂

(2)
.1

)
=




2 − 2i i 3 − i

2 + 2i −1 1 + 3i

1 + 5i 3 − i 3 + i


 ,

then finally we obtain

x11 =

P
β∈J2,3{1}

˛̨
˛
“
A

2
. 1

“
bb(1)

.1

””
β
β

˛̨
˛

P
β∈J2,3

˛̨
˛(A2)

β

β

˛̨
˛

+


b11 −

P
β∈J2,3{1}

˛̨
˛
“
A

2
. 1

“
bb(2)

.1

””
β
β

˛̨
˛

P
β∈J2,3

˛̨
˛(A2)

β

β

˛̨
˛


 t =

3−3i
−18i +

(
1 − −18i

−18i

)
t = 1+i

6 .

Similarly,

x12 =
−3 + 3i

−18i
+

(
i −

9 + 9i

−18i

)
t =

−1 − i

6
+

1 + i

2
t, x13 = 0 + (1 − 0) t = t,

x21 =
3 + 3i

−18i
+

(
i −

−18

−18i

)
t =

−1 + i

6
,

x22 =
−3 − 3i

−18i
+

(
0−

−9 + 9i

−18i

)
t =

1 − i

6
+

1 + i

2
t, x23 = 0 + (1 − 0) t = t,

x31 =
−12i

−18i
+

(
1−

−18i

−18i

)
t =

2

3
,

x32 =
9 + 3i

−18i
+

(
i −

−18

−18i

)
t =

−1 + 3i

6
, x33 = 0 + (0 − 0) t = 0.

Then

X =
1

6




1 + i −1 − i + (3 + 3i)t t

−1 + i 1− i + (3 + 3i)t t

4 −1 + 3i 0




is the partial solution of (5.7) .
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6. Conclusion

From student years it is well known that Cramer’s rule may only be used when the

system is square and the coefficient matrix is invertible. In this chapter we are consid-

ered various cases of Cramer’s rule for generalized inverse solutions of systems of linear

equations and matrix equations when the coefficient matrix is not square or non-invertible.

The results of this chapter have practical and theoretical importance because they give an

explicit representation of an individual component of solutions independently of all other

components. Also the results of this chapter can be extended to matrices over rings (and

now this is done in the quaternion skew field), to polynomial matrices, etc.
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Chapter 9

RELATION OF ROW-COLUMN DETERMINANTS

WITH QUASIDETERMINANTS OF MATRICES

OVER A QUATERNION ALGEBRA

Aleks Kleyn1,∗ and Ivan I. Kyrchei2,†

1American Mathematical Society, USA
2Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics, Lviv, Ukraine

Abstract

Since product of quaternions is noncommutative, there is a problem how to determine a

determinant of a matrix with noncommutative elements (it’s called a noncommutative

determinant). We consider two approaches to define a noncommutative determinant.

Primarily, there are row – column determinants that are an extension of the classical

definition of the determinant; however we assume predetermined order of elements

in each of the terms of the determinant. In the chapter we extend the concept of an

immanant (permanent, determinant) to a split quaternion algebra using methods of the

theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on

these properties, analogs of the classical adjont matrix over a quaternion skew field

have been obtained. As a result we have a solution of a system of linear equations

over a quaternion division algebra according to Cramer’s rule by using row–column

determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix in-

version. By using quasideterminants, solving of a system of linear equations over a

quaternion division algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quaside-

terminants is that we have not one determinant of a quadratic matrix of order n with

noncommutative entries, but certain set (there are n2 quasideterminants, n row deter-

minants, and n column determinants). We have obtained a relation of row-column

determinants with quasideterminants of a matrix over a quaternion division algebra.

∗E-mail address: Aleks Kleyn@MailAPS.org
†E-mail address: kyrchei@online.ua
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1. Introduction

Linear algebra is a powerful tool that we use in different areas of mathematics, including

the calculus, the analytic and differential geometry, the theory of differential equations, and

the optimal control theory. Linear algebra has accumulated a rich set of different methods.

Since some methods have a common final result, this gives us the opportunity to choose the

most effective method, depending on the nature of calculations.

At transition from linear algebra over a field to linear algebra over a division ring,

we want to save as much as possible tools that we regularly use. Already in the early

XX century, shortly after Hamilton created a quaternion algebra, mathematicians began

to search the answer how looks like the algebra with noncommutative multiplication. In

particular, there is a problem how to determine a determinant of a matrix with elements

belonging to a noncommutative ring. Such determinant is also called a noncommutative

determinant.

There were a lot of approaches to the definition of the noncommutative determinant.

However none of the introduced noncommutative determinants maintained all those prop-

erties that determinant possessed for matrices over a field. Moreover, in paper [1], J. Fan

proved that there is no unique definition of determinant which would expands the definition

of determinant of real matrices for matrices over the division ring of quaternions. There-

fore, search for a solution of the problem to define a noncommutative determinant is still

going on.

In this chapter, we consider two approaches to define noncommutative determinant.

Namely, we explore row-column determinants and quasideterminant.

Row-column determinants are an extension of the classical definition of the determi-

nant, however we assume predetermined order of elements in each of the terms of the

determinant. Using row-column determinants, we obtain a solution of a system of linear

equations over a quaternion division algebra according to Cramer’s rule.

Quasideterminant appeared from the analysis of the procedure of a matrix inversion.

Using quasideterminant, solving of a system of linear equations over a quaternion division

algebra is similar to the Gauss elimination method.

There is common in definition of row and column determinants and quasideterminant.

In both cases, we have not one determinant in correspondence to quadratic matrix of or-

der n with noncommutative entries, but certain set (there are n2 quasideterminant, n row

determinants, and n column determinants).

Today there is wide application of quasideterminants in linear algebra ([2, 3]), and in

physics ([4, 5, 6]). Row and column determinants ([7, 8]) introduced relatively recently

are less well known. Purpose of the chapter is establishment of a relation of row-column

determinants with quasideterminants of a matrix over a quaternion algebra. The authors are

hopeful that the establishment of this relation can provide mutual development of both the

theory of quasideterminants and the theory of row-column determinants.
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1.1. Convention about Notations

There are different forms to write elements of a matrix. In this paper, we denote aij an

element of the matrix A. The index i labels rows, and the index j labels columns.

We use the following notation for different minors of the matrix A.

ai . the i-th row

AS . the minor obtained from A by selecting rows with index from the set S

Ai . the minor obtained from A by deleting row ai .

AS . the minor obtained from A by deleting rows with index from the set S

a. j the j-th column

A. T the minor obtained from A by selecting columns with index from the set T

A. j the minor obtained from A by deleting column a. j

A. T the minor obtained from A by deleting columns with index from the set T

A.j (b) the matrix obtained from A by replacing its j-th column by the column b

Ai. (b) the matrix obtained from A by replacing its i-th row by the row b

Considered notations can be combined. For instance, the record

Aii
k.(b)

means replacing of the k-th row by the vector b followed by removal of both the i-th row

and the i-th column.

As was noted in section 2.2 of the paper [9], we can define two types of matrix products:

either product of rows of first matrix over columns of second one, or product of columns of

first matrix over rows of second one. However, according to the theorem 2.2.5 in the paper

[9], this product is symmetric relative operation of transposition. Hence in the chapter, we

will restrict ourselves by traditional product of rows of first matrix over columns of second

one; and we do not indicate clearly the operation like it was done in [9].

1.2. Preliminaries. A Brief Overview of the Theory of Noncommutative

Determinants

Theory of determinants of matrices with noncommutative elements can be divided into

three groups regarding their methods of definition. Denote M(n, K) the ring of matrices

with elements from the ring K. One of the ways to determine determinant of a matrix of

M (n, K) is following ([11, 12, 13]).

Definition 1.1. Let the functional

d : M (n, K) → K

satisfy the following axioms.
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Axiom 1. d (A) = 0 iff A is singular (irreversible).

Axiom 2. ∀A, B ∈ M (n, K), d (A ·B) = d (A) · d (B).

Axiom 3. If we obtain a matrix A′ from matrix A either by adding of an arbitrary

row multiplied on the left with its another row or by adding of an arbitrary column

multiplied on the right with its another column, then

d
(

A′
)

= d (A)

Then the value of the functional d is called determinant of A ∈ M (n, K).

The known determinants of Dieudonné and Study are examples of such functionals.

Aslaksen [11] proved that determinants which satisfy Axioms 1, 2 and 3 take their value

in some commutative subset of the ring. It makes no sense for them such property of con-

ventional determinants as the expansion along an arbitrary row or column. Therefore a

determinantal representation of an inverse matrix using only these determinants is impossi-

ble. This is the reason that causes to introduce determinant functionals that do not satisfy

all Axioms. Dyson [13] considers Axiom 1 as necessary to determine a determinant.

In another approach, a determinant of a square matrix over a noncommutative ring is

considered as a rational function of entries of a matrix. The greatest success is achieved

by Gelfand and Retakh [14, 15, 16, 17] in the theory of quasideterminants. We present

introduction to the theory of quasideterminants in the section 5.

In third approach, a determinant of a square matrix over a noncommutative ring is con-

sidered as an alternating sum of n! products of entries of a matrix. However, it assumed

certain fixed order of factors in each term. E. H. Moore was first who achieved implementa-

tion of the key Axiom 1 using such definition of a noncommutative determinant. Moore had

done this not for all square matrices, but only for Hermitian. He defined the determinant of

a Hermitian matrix1 A = (aij)n×n over a division ring with involution by induction over n

following way (see [13])

MdetA =







a11, n = 1
n
∑

j=1
εijaijMdet (A(i → j)) , n > 1 (1.1)

Here εkj =

{

1, i = j

−1, i 6= j
, and A(i → j) denotes the matrix obtained from A by replac-

ing its j-th column with the i-th column and then by deleting both the i-th row and column.

Another definition of this determinant is presented in [11] by using permutations,

Mdet A =
∑

σ∈Sn

|σ|an11n12
· . . . · an1l1

n11
·an21n22

· . . . · anrl1
nr1

.

Here Sn is symmetric group of n elements. A cycle decomposition of a permutation σ has

form,

σ = (n11 . . . n1l1) (n21 . . .n2l2) . . . (nr1 . . . nrlr) .

1Hermitian matrix is such matrix A = (aij) that aij = aji.
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However, there was no any generalization of the definition of Moore’s determinant to

arbitrary square matrices. Freeman J. Dyson [13] pointed out the importance of this prob-

lem.

L. Chen [18, 19] offered the following definition of determinant of a square matrix over

the quaternion skew field H, by putting for A = (aij) ∈ M (n, H),

det A =
∑

σ∈Sn

ε (σ) an1i2 · ai2i3 . . . · aisn1
· . . . · anrk2

· . . . · aklnr ,

σ = (n1i2 . . . is) . . . (nrk2 . . . kr) ,
n1 > i2, i3, . . . , is; . . . , nr > k2, k3, . . . , kl,

n = n1 > n2 > . . . > nr ≥ 1.

Despite the fact that this determinant does not satisfy Axiom 1, L. Chen got a determinantal

representation of an inverse matrix. However it can not been expanded along arbitrary rows

and columns (except for n-th row). Therefore, L. Chen did not obtain a classical adjoint

matrix as well. For A = (α1, . . . , αm) over the quaternion skew field H, if ‖A‖ :=
det(A∗A) 6= 0, then ∃A−1 = (bjk), where

bjk =
1

‖A‖
ωkj ,

(

j, k = 1, n
)

,

ωkj = det (α1 . . .αj−1αnαj+1 . . . αn−1δk)
∗ (α1 . . . αj−1αnαj+1 . . .αn−1αj) .

Here αi is the i-th column of A, δk is the n-dimensional column with 1 in the k-th entry

and 0 in other ones. L. Chen defined ‖A‖ := det(A∗A) as the double determinant. If

‖A‖ 6= 0, then the solution of a right system of linear equations

∑n

j=1
αjxj = β

over H is represented by the following formula, which the author calls Cramer’s rule

xj = ‖A‖−1
Dj,

for all j = 1, n, where

Dj = det





























α∗
1

...

α∗
j−1

α∗
n

α∗
j+1

...

α∗
n−1

β∗





























(

α1 . . . αj−1 αn αj+1 . . . αn−1 αj

)

.

Here α∗
i is the i-th row of A∗ and β∗ is the n-dimensional vector-row conjugated with β.

In this chapter we explore the theory of row and column determinants which develops

the classical approach to the definition of determinant of a square matrix, as an alternating

sum of products of entries of a matrix but with a predetermined order of factors in each of

the terms of the determinant.
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2. Quaternion Algebra

A quaternion algebra H(a, b) (we also use notation

(

a, b

F

)

) is a four-dimensional

vector space over a field F with basis {1, i, j, k} and the following multiplication rules:

i2 = a,

j2 = b,
ij = k,

ji = −k.

The field F is the center of the quaternion algebra H(a, b).

In the algebra H(a, b) there are following mappings.

• A quadratic form

n : x ∈ H → n(x) ∈ F

such that

n(x · y) = n(x)n(y) x, y ∈ H

is called the norm on a quaternion algebra H.

• The linear mapping

t : x = x0 + x1i + x2j + x3k ∈ H → t(x) = 2x0 ∈ F

is called the trace of a quaternion. The trace satisfies permutability property of the

trace,

t (q · p) = t (p · q) .

From the theorem 10.3.3 in the paper [9], it follows

t(x) =
1

2
(x− ixi− jxj − kxk). (2.1)

• A linear mapping

x → x = t(x)− x (2.2)

is an involution. The involution has following properties

x = x,

x + y = x + y,

x · y = y · x.

A quaternion x is called the conjugate of x ∈ H. The norm and the involution satisfy

the following condition:

n (q) = n(q).

The trace and the involution satisfy the following condition,

t (x) = t(x).
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From equations (2.1), (2.2), it follows that

x = −
1

2
(x + ixi + jxj + kxk).

Depending on the choice of the field F, a and b, on the set of quaternion algebras there

are only two possibilities [20]:

1.

(

a, b

F

)

is a division algebra.

2.

(

a, b

F

)

is isomorphic to the algebra of all 2 × 2 matrices with entries from the field

F. In this case, quaternion algebra is splittable.

The most famous example of a non-split quaternion algebra is Hamilton’s quaternions

H = (−1,−1
R

), where R is real field. The set of quaternions can be represented as

H = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = j2 = k2 = −1 and ijk = −1. Consider some non-isomorphic quaternion

algebra with division.

1.

(

a, b

R

)

is isomorphic to the Hamilton quaternion skew field H whenever a < 0 and

b < 0. Otherwise

(

a, b

R

)

is splittable.

2. If F is the rational field Q, then there exist infinitely many nonisomorphic division

quaternion algebras

(

a, b

Q

)

depending on choice of a < 0 and b < 0.

3. Let Qp be the p-adic field where p is a prime number. For each prime number p there

is a unique division quaternion algebra.

The famous example of a split quaternion algebra is split quaternions of James Cockle

HS(−1,1
R

), which can be represented as

HS = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = −1, j2 = k2 = 1 and ijk = 1. Unlike quaternion division algebra, the

set of split quaternions is a noncommutative ring with zero divisors, nilpotent elements

and nontrivial idempotents. Recently there was conducted a number of studies in split

quaternion matrices (see, for ex. [21, 22, 23, 24]).

3. Introduction to the Theory of the Row and Column

Determinants over a Quaternion Algebra

The theory of the row and column determinants was introduced [7, 8] for matrices over

a quaternion division algebra. Now this theory is in development for matrices over a split

quaternion algebra. In the following two subsections we extend the concept of immanant

(permanent, determinant) to a split quaternion algebra using methods of the theory of the

row and column determinants.
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3.1. Definitions and Properties of the Column and Row Immanants

The immanant of a matrix is a generalization of the concepts of determinant and per-

manent. The immanant of a complex matrix was defined by Dudley E. Littlewood and

Archibald Read Richardson [25] as follows.

Definition 3.1. Let σ ∈ Sn denote the symmetric group on n elements. Let χ : Sn → C be

a complex character. For any n × n matrix A = (aij) ∈ Cn×n define the immanent of A

as

Immχ(A) =
∑

σ∈Sn

χ(σ)

n
∏

i=1

ai σ(i)

Special cases of immanants are determinants and permanents. In the case where χ is the

constant character (χ(x) = 1 for all x ∈ Sn), Immχ(A) is the permanent of A. In the case

where χ is the sign of the permutation (which is the character of the permutation group as-

sociated to the (non-trivial) one-dimensional representation), Immχ(A) is the determinant

of A.

Denote by Hn×m a set of n × m matrices with entries in an arbitrary (split) quaternion

algebra H and M (n, H) a ring of matrices with entries in H. For A = (aij) ∈ M (n, H) we

define n row immanants as follows.

Definition 3.2. The i-th row immanant of A = (aij) ∈ M (n, H) is defined by putting

rImmiA =
∑

σ∈Sn

χ(σ)ai ik1
aik1

ik1+1
. . .aik1+l1

i . . .aikr ikr+1
. . . aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ is written as follows

σ = (i ik1
ik1+1 . . . ik1+l1) (ik2

ik2+1 . . . ik2+l2) . . . (ikr ikr+1 . . . ikr+lr) . (3.1)

Here the index i starts the first cycle from the left and other cycles satisfy the following

conditions

ik2
< ik3

< . . . < ikr , ikt < ikt+s. (3.2)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions.

Definition 3.3. The i-th row permanent of A = (aij) ∈ M (n, H) is defined as

rperiA =
∑

σ∈Sn

ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2).

Definition 3.4. The i-th row determinant of A = (aij) ∈ M (n, H) is defined as

rdetiA =
∑

σ∈Sn

(−1)n−r ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2), (since sign(σ) = (−1)n−r
).
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For A = (aij) ∈ M (n, H) we define n column immanants as well.

Definition 3.5. The j-th column immanant of A = (aij) ∈ M (n, H) is defined as

cImmjA =
∑

τ∈Sn

χ(τ)ajkr jkr+lr
. . . ajkr+1jkr

. . .aj jk1+l1
. . .ajk1+1jk1

ajk1
j ,

where right-ordered cycle notation of the permutation τ ∈ Sn is written as follows

τ = (jkr+lr . . . jkr+1jkr ) . . . (jk2+l2 . . . jk2+1jk2
) (jk1+l1 . . . jk1+1jk1

j) . (3.3)

Here the first cycle from the right begins with the index j and other cycles satisfy the fol-

lowing conditions

jk2
< jk3

< . . . < jkr , jkt < jkt+s, (3.4)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions as well.

Definition 3.6. The j-th column permanent of A = (aij) ∈ M (n, H) is defined as

rperjA =
∑

τ∈Sn

ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Definition 3.7. The j-th column determinant of A = (aij) ∈ M (n, H) is defined as

rdetjA =
∑

τ∈Sn

(−1)n−r ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Consider the basic properties of the column and row immanants over H.

Proposition 3.8. (The first theorem about zero of an immanant) If one of the rows (columns)

of A ∈ M (n, H) consists of zeros only, then rImmi A = 0 and cImmi A = 0 for all

i = 1, n.

Proof. The proof immediately follows from the definitions.

Denote by Ha and aH left and right principal ideals of H, respectively.

Proposition 3.9. (The second theorem about zero of an row immanant) Let A = (aij) ∈
M (n, H) and aki ∈ Hai and aij ∈ aiH, where n(ai) = 0 for k, j = 1, n and for all i 6= k.

Let a11 ∈ Ha1 and a22 ∈ a1H if k = 1, and akk ∈ Hak and a11 ∈ akH if k = i > 1,

where n(ak) = 0. Then rImmkA = 0.
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Proof. Let i 6= k. Consider an arbitrary monomial of rImmkA, if i 6= k,

d = χ(σ)akiaij . . . alm

where {l, m} ⊂ {1, ..., n}. Since there exists ai ∈ H such that n(ai) = 0, and aki ∈ Hai,

aij ∈ aiH, than akiaij = 0 and d = 0.

Let i = k = 1. Then an arbitrary monomial of rImm1A,

d = χ(σ)a11a22 . . . alm.

Since there exists a1 ∈ H such that n(a1) = 0, and a11 ∈ Ha1, a22 ∈ a1H, then a11a22 = 0

and d = 0.

If k = i > 1, then an arbitrary monomial of rImmkA,

d = χ(σ)akka11 . . .alm.

Since there exists ak ∈ H such that n(ak) = 0, and akk ∈ Hak , a11 ∈ akH, then akka11 =

0 and d = 0.

Proposition 3.10. (The second theorem about zero of an column immanant) Let A =
(aij) ∈ M (n, H) and aik ∈ aiH and aji ∈ Hai, where n(ai) = 0 for k, j = 1, n and

for all i 6= k. Let a11 ∈ a1H and a22 ∈ Ha1 if k = 1, and akk ∈ akH and a11 ∈ Hak if

k = i > 1, where n(ak) = 0. Then cImmkA = 0.

Proof. The proof is similar to the proof of the Proposition 3.9.

The proofs of the next theorems immediately follow from the definitions.

Proposition 3.11. If the i-th row of A = (aij) ∈ M (n, H) is left-multiplied by b ∈ H, then

rImmi Ai . (b · ai .) = b · rImmi A for all i = 1, n.

Proposition 3.12. If the j-th column of A = (aij) ∈ M (n, H) is right-multiplied by b ∈ H,

then cImmj A. j (a. j · b) = cImmj A · b for all j = 1, n.

Proposition 3.13. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that atj =
bj + cj for all j = 1, n, then for all i = 1, n

rImmi A = rImmi At . (b) + rImmi At . (c) ,
cImmi A = cImmi At . (b) + cImmi At . (c) ,

where b = (b1, . . . , bn), c = (c1, . . . , cn).

Proposition 3.14. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that ai t =

bi + ci for all i = 1, n, then for all j = 1, n

rImmj A = rImmj A. t (b) + rImmj A. t (c) ,

cImmj A = cImmj A. t (b) + cImmjA. t (c) ,

where b = (b1, . . . , bn)T , c = (c1, . . . , cn)T .
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Proposition 3.15. If A∗ is the Hermitian adjoint matrix (conjugate and transpose) of A ∈
M (n, H), then rImmi A

∗ = cImmi A for all i = 1, n.

Particular cases of these properties for the row-column determinants and permanents

are evident.

Remark 3.16. The peculiarity of the column immanant (permanent, determinant) is that,

at the direct calculation, factors of each of the monomials are written from right to left.

In Lemmas 3.17 and 3.18, we consider the recursive definition of the column and row

determinants. This definition is an analogue of the expansion of a determinant along a row

and a column in commutative case.

Lemma 3.17. Let Ri j be the right ij-th cofactor of A = (aij) ∈ M (n, H), namely

rdeti A =
n
∑

j=1
ai j · Ri j

for all i = 1, n. Then

Ri j =

{

−rdetj (Aii
.j(a. i)), i 6= j

rdetk Aii, i = j

k =

{

2, i = 1
1, i > 1

where the matrix (Aii
.j(a. i)) is obtained from A by replacing its j-th column with the i-th

column and then by deleting both the i-th row and column.

Lemma 3.18. Let Li j be the left ijth cofactor of entry ai j of matrix A = (aij) ∈
M (n, H), namely

cdetj A =
n
∑

i=1
Li j · ai j

for all j = 1, n. Then

Li j =

{

−cdeti (Ajj
i. (aj .)), i 6= j

cdetk Ajj, i = j

k =

{

2, j = 1
1, j > 1

where the matrix (Ajj
i. (aj .)) is obtained from A by replacing its ith row with the jth and

then by deleting both the jth row and column.

Remark 3.19. Clearly, an arbitrary monomial of each row or column determinant cor-

responds to a certain monomial of another row or column determinant such that both of

them have the same sign, consist of the same factors and differ only in their ordering. If

the entries of A are commutative, then rdet1 A = . . . = rdetnA = cdet1 A = . . . =
cdetnA.
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4. An Immanant of a Hermitian Matrix

If A∗ = A then A ∈ Hn×n is called a Hermitian matrix. In this section we consider

the key theorem about row-column immanants of a Hermitian matrix.

The following lemma is needed for the sequel.

Lemma 4.1. Let Tn be the sum of all possible products of n factors, each of their are either

hi ∈ H or hi for all i = 1, n, by specifying the ordering in the terms, Tn = h1 · h2 · . . . ·
hn + h1 · h2 · . . . · hn + . . . + h1 · h2 · . . . · hn. Then Tn consists of the 2n terms and

Tn = t (h1) t (h2) . . . t (hn) .

Theorem 4.2. If A ∈ M (n, H) is a Hermitian matrix, then

rImm1A = . . . = rImmnA = cImm1A = . . . = cImmnA ∈ F.

Proof. At first we note that if A = (aij) ∈ Hn×n is Hermitian, then we have aii ∈ F and

aij = aji for all i, j = 1, n.

We divide the set of monomials of rImmiA for some i ∈ {1, ..., n} into two subsets.

If indices of coefficients of monomials form permutations as products of disjoint cycles

of length 1 and 2, then we include these monomials to the first subset. Other monomials

belong to the second subset. If indices of coefficients form a disjoint cycle of length 1, then

these coefficients are ajj for j ∈ {1, ..., n} and ajj ∈ F.

If indices of coefficients form a disjoint cycle of length 2, then these entries are conju-

gated, aikik+1
= aik+1ik , and

aikik+1
· aik+1ik = aik+1ik · aik+1ik = n(aik+1ik) ∈ F.

So, all monomials of the first subset take on values in F.

Now we consider some monomial d of the second subset. Assume that its index permu-

tation σ forms a direct product of r disjoint cycles. Denote ik1
:= i, then

d = χ(σ)aik1
ik1+1

. . . aik1+l1
ik1

aik2
ik2+1

. . . aik2+l2
ik2

. . .aikm ikm+1
. . .×

×aikm+lm ikm
. . . aikr ikr+1

. . .aikr+lr ikr
= χ(σ)h1h2 . . . hm . . .hr ,

(4.1)

where hs = aiks iks+1
· . . . · aiks+ls iks

for all s = 1, r, and m ∈ {1, . . . , r}. If ls = 1, then

hs = aiks iks+1
aiks+1 iks

= n(aiks iks+1
) ∈ F. If ls = 0, then hs = aiks iks

∈ F. If ls = 0

or ls = 1 for all s = 1, r in (4.1), then d belongs to the first subset. Let there exists s ∈ In

such that ls ≥ 2. Then

hs = aiks iks+1
. . . aiks+ls iks

= aiks+ls iks
. . . aiks iks+1

= aiks iks+ls
. . .aiks+1iks

.

Denote by σs (iks) : = (iksiks+1 . . . iks+ls) a disjoint cycle of indices of d for some s ∈

{1, ..., r}, then σ = σ1 (ik1
) σ2 (ik2

) ...σr (ikr ). The disjoint cycle σs (iks) corresponds

to the factor hs. Then σ−1
s (iks) = (iksiks+lsiks+1 . . . iks+1) is the inverse disjoint cycle

and σ−1
s (iks) corresponds to the factor hs. By the Lemma 4.1, there exist another 2p − 1

monomials for d, (where p = r−ρ and ρ is the number of disjoint cycles of length 1 and 2),

such that their index permutations form the direct products of r disjoint cycles either σs (iks)
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or σ−1
s (iks) by specifying their ordering by s from 1 to r. Their cycle notations are left-

ordered according the to the Definition 3.2. These permutations are unique decomposition

of the permutation σ including their ordering by s from 1 to r. Suppose C1 is the sum of

these 2p − 1 monomials and d, then, by the Lemma 4.1, we obtain

C1 = χ(σ)α t(hν1
) . . . t(hνp) ∈ F.

Here α ∈ F is the product of coefficients whose indices form disjoint cycles of length 1 and

2, νk ∈ {1, . . . , r} for all k = 1, p.

Thus for an arbitrary monomial of the second subset of rImmi A, we can find the 2p

monomials such that their sum takes on a value in F. Therefore, rImmi A ∈ F.

Now we prove the equality of all row immanants of A. Consider an arbitrary rImmj A

such that j 6= i for all j = 1, n. We divide the set of monomials of rImmj A into two

subsets using the same rule as for rImmi A. Monomials of the first subset are products of

entries of the principal diagonal or norms of entries of A. Therefore they take on a value in

F and each monomial of the first subset of rImmi A is equal to a corresponding monomial

of the first subset of rImmj A.

Now consider the monomial d1 of the second subset of monomials of rImmj A con-

sisting of coefficients that are equal to the coefficients of d but they are in another order.

Consider all possibilities of the arrangement of coefficients in d1.

(i) Suppose that the index permutation σ′ of its coefficients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their

ordering. Then σ′ = σ and we have

d1 = χ(σ)αhµ . . .hλ,

where {µ, . . . , λ} = {ν1, . . . , νp}. By the Lemma 4.1, there exist 2p − 1 monomials of the

second subset of rImmj A such that each of them is equal to a product of p factors either

hs or hs for all s ∈ {µ, . . . , λ}. Hence by the Lemma 4.1, we obtain

C2 = χ(σ)α t(hµ) . . . t(hλ) = χ(σ) α t(hν1
) . . . t(hνp) = C1.

(ii) Now suppose that in addition to the case (i) the index j is placed inside some disjoint

cycle of the index permutation σ of d, e.g., j ∈ {ikm+1, ..., ikm+lm}. Denote j = ikm+q .

Considering the above said and σkm+1(ikm+1) = σkm+q(ikm+q), we have σ′ = σ. Then d1

is represented as follows:

d1 = χ(σ)aikm+q ikm+q+1
. . . aikm+lm ikm

aikm ikm+1
. . .×

×aikm+q−1ikm+q
aikµ ikµ+1

. . . aikµ+lµ ikµ
. . . aikλ

ikλ+1
. . .aikλ+lλ

ikλ
=

= χ(σ)αh̃mhµ . . .hλ,

(4.2)

where {m, µ, . . . , λ} = {ν1, . . . , νp}. Except for h̃m, each factor of d1 in (4.2) corresponds

to the equal factor of d in (4.1). By the rearrangement property of the trace, we have

t(h̃m) = t(hm). Hence by the Lemma 4.1 and by analogy to the previous case, we obtain,

C2 = χ(σ)α t(h̃m) t(hµ) . . . t(hλ) =
= χ(σ) α t(hν1

) . . . t(hm) . . . t(hνp) = C1.
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(iii) If in addition to the case (i) the index i is placed inside some disjoint cycles of the index

permutation of d1, then we apply the rearrangement property of the trace to this cycle. As

in the previous cases we find 2p monomials of the second subset of rImmj A such that by

Lemma 4.1 their sum is equal to the sum of the corresponding 2p monomials of rImmiA.

Clearly, we obtain the same conclusion at association of all previous cases, then we apply

twice the rearrangement property of the trace.

Thus, in any case each sum of 2p corresponding monomials of the second subset of

rImmj A is equal to the sum of 2p monomials of rImmi A. Here p is the number of

disjoint cycles of length more than 2. Therefore, for all i, j = 1, n we have

rImmi A = rImmj A ∈ F.

The equality cImmi A = rImmi A for all i = 1, n is proved similarly.

Remark 4.3. If A ∈ Hn×n is skew-hermitian (A = −A∗), then the Theorem 4.2 is not

meaningful. It follows from the next example.

Example 4.4. Consider the following skew-hermitian matrix over the split quaternions of

James Cockle HS(−1,1
R

),

A =

(

j 2 + i

−2 + i −k

)

.

Since
rImm1 A = −jk − (2 + i)(−2 + i) = 5 + i,
rImm2 A = −(−2 + i)(2 + i) − kj = 5 − i,

then rImm1 A 6= rImm2 A.

Since the Theorem 4.2, we have the following definition.

Definition 4.5. Since all column and row immanants of a Hermitian matrix over H are

equal, we can define the immanant (permanent, determinant) of a Hermitian matrix A ∈

Hn×n . By definition, we put for all i = 1, n

Imm A := rImmi A = cImmi A,

per A := rperi A = cperi A,
det A := rdeti A = cdeti A.

4.1. Cramer’s Rule for System of Linear Equations over a Quaternion

Division Algebra

In this subsection we shall be consider H as a quaternion division algebra especially

since quasideterminants are defined over the skew field as well.

Properties of the determinant of a Hermitian matrix is completely explored in [7, 8] by

its row and column determinants. Among all, consider the following.

Theorem 4.6. If the i-th row of the Hermitian matrix A ∈ M (n, H) is replaced with a left

linear combination of its other rows

ai . = c1ai1 . + . . . + ckaik .
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where cl ∈ H for all l = 1, k and {i, il} ⊂ {1, . . . , n}, then for all i = 1, n

cdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = rdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = 0.

Theorem 4.7. If the j-th column of a Hermitian matrix A ∈ M (n, H) is replaced with a

right linear combination of its other columns

a. j = a. j1c1 + . . . + a. jk
ck

where cl ∈ H for all l = 1, k and {j, jl} ⊂ {1, . . . , n} , then for all j = 1, n

cdetjA. j (a. j1 · c1 + . . . + a. jk
· ck) = rdetjA. j (a. j1 · c1 + . . . + a. jk

· ck) = 0.

The following theorem on the determinantal representation of an inverse matrix of Her-

mitian follows immediately from these properties.

Theorem 4.8. There exist a unique right inverse matrix (RA)−1 and a unique left inverse

matrix (LA)−1 of a nonsingular Hermitian matrix A ∈ M (n, H), (det A 6= 0), where

(RA)−1 = (LA)−1 =: A−1. Right inverse and left inverse matrices has following deter-

minantal representation

(RA)−1 =
1

detA









R11 R21 · · · Rn1

R12 R22 · · · Rn2

· · · · · · · · · · · ·
R1n R2n · · · Rnn









,

(LA)−1 =
1

detA









L11 L21 · · · Ln1

L12 L22 · · · Ln2

· · · · · · · · · · · ·
L1n L2n · · · Lnn









,

where Rij , Lij are right and left ij-th cofactors of A, respectively, for all i, j = 1, n.

To obtain the determinantal representation for an arbitrary inverse matrix over a quater-

nion division algebra H, we consider the right AA∗ and left A∗A corresponding Hermitian

matrices.

Theorem 4.9 ([7]). If an arbitrary column of A ∈ Hm×n is a right linear combination of

its other columns, or an arbitrary row of A∗ is a left linear combination of its other rows,

then detA∗A = 0.

Since principal submatrices of a Hermitian matrix are also Hermitian, then the basis

principal minor may be defined in this noncommutative case as a principal nonzero minor

of a maximal order. We also can introduce the notion of the rank of a Hermitian matrix by

principal minors, as a maximal order of a principal nonzero minor. The following theorem

establishes the correspondence between the rank by principal minors of a Hermitian matrix

and the rank of the corresponding matrix that are defined as a maximum number of right-

linearly independent columns or left-linearly independent rows, which form a basis.

Theorem 4.10 ([7]). A rank by principal minors of a Hermitian matrix A∗A is equal to its

rank and a rank of A ∈ Hm×n .
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Theorem 4.11 ([7]). If A ∈ Hm×n , then an arbitrary column of A is a right linear com-

bination of its basic columns or arbitrary row of A is a left linear combination of its basic

rows.

It implies a criterion for the singularity of a corresponding Hermitian matrix.

Theorem 4.12 ([7]). The right linearly independence of columns of A ∈ Hm×n or the left

linearly independence of rows of A∗ is the necessary and sufficient condition for

detA∗A 6= 0

Theorem 4.13 ([7]). If A ∈ M (n, H), then detAA∗ = detA∗A.

In the following example, we shall prove the Theorem 4.13 for the case n = 2.

Example 4.14. Consider the matrix A =

(

a11 a12

a21 a22

)

, then A∗ =

(

a11 a21

a12 a22

)

. Respec-

tively, we have

AA∗ =

(

a11a11 + a12a12 a11a21 + a12a22

a21a11 + a22a12 a21a21 + a22a22

)

,

A∗A =

(

a11a11 + a21a21 a11a12 + a21a22

a12a11 + a22a21 a12a12 + a22a22

)

.

According to thw Theorem 4.2 and the Definition 4.5, we have

det AA∗ = rdet1AA∗,

det A∗A = rdet1A
∗A

According to the Lemma 3.17

detAA∗ = (AA∗)11(AA∗)22 − (AA∗)12(AA∗)21

= (a11a11 + a12a12)(a21a21 + a22a22)

−(a11a21 + a12a22)(a21a11 + a22a12)
= a11a11a21a21 + a12a12a21a21

+a11a11a22a22 + a12a12a22a22

−a11a21a21a11 − a12a22a21a11

−a11a21a22a12 − a12a22a22a12

= a12a12a21a21 + a11a11a22a22

−a12a22a21a11 − a11a21a22a12

, (4.3)

detA∗A = (A∗A)11(A
∗A)22 − (A∗A)12(A

∗A)21

= (a11a11 + a21a21)(a12a12 + a22a22)
−(a11a12 + a21a22)(a12a11 + a22a21)

= a11a11a12a12 + a21a21a12a12

+a11a11a22a22 + a21a21a22a22

−a11a12a12a11 − a21a22a12a11

−a11a12a22a21 − a21a22a22a21

= a21a21a12a12 + a11a11a22a22

−a21a22a12a11 − a11a12a22a21

. (4.4)
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Positive terms in equations (4.3), (4.4) are real numbers and they obviously coincide. To

prove equation

a12a22a21a11 + a11a21a22a12 = a21a22a12a11 + a11a12a22a21 (4.5)

we use the rearrangement property of the trace of elements of the quaternion algebra,

t(pq) = t(qp). Indeed,

a12a22a21a11 + a11a21a22a12 = a12a22a21a11 + a12a22a21a11 = t(a12a22a21a11),

a21a22a12a11 + a11a12a22a21 = a11a12a22a21 + a11a12a22a21 = t(a11a12a22a21)

Then by the rearrangement property of the trace, we obtain (4.5).

According to the Theorem 4.13, we introduce the concept of double determinant. For

the first time this concept was introduced by L. Chen ([18]).

Definition 4.15. The determinant of corresponding Hermitian matrices is called the double

determinant of A ∈ M (n, H), i.e., ddetA := det (A∗A) = det (AA∗) .

If H is the Hamilton’s quaternion skew field H, then the following theorem establishes

the validity of Axiom 1 for the double determinant.

Theorem 4.16. If {A, B} ⊂ M (n, H), then ddet (A ·B) = ddetA · ddetB.

Unfortunately, if a non-Hermitian matrix is not full rank, then nothing can be said about

singularity of its row and column determinant. We show it in the following example.

Example 4.17. Consider the matrix

A =

(

i j

j −i

)

.

Its second row is obtained from the first row by left-multiplying by k. Then, by the Theorem

4.12, ddetA = 0. Indeed,

A∗A =

(

−i −j
−j i

)

·

(

i j
j −i

)

=

(

2 −2k
2k 2

)

.

Then ddetA = 4 + 4k2 = 0. However

cdet1A = cdet2A = rdet1A = rdet2A = −i2 − j2 = 2.

At the same time rankA = 1, that corresponds to the Theorem 4.10.

The correspondence between the double determinant and the noncommutative determi-

nants of Moore, Stady and Dieudonné are as follows,

ddetA = Mdet (A∗A) = SdetA = Ddet2A.

Definition 4.18. Let ddetA = cdetj (A∗A) =
∑

i

Lij · aij for j = 1, n. Then Lij is

called the left double ij-th cofactor of A ∈ M (n, H).
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Definition 4.19. Let ddetA = rdeti (AA∗) =
∑

j

aij ·Rij for i = 1, n. Then Rij is called

the right double ij-th cofactor of A ∈ M (n, H).

Theorem 4.20. The necessary and sufficient condition of invertibility of a matrix A =
(aij) ∈ M(n, H) is ddetA 6= 0. Then ∃A−1 = (LA)−1 = (RA)−1

, where

(LA)−1 = (A∗A)−1
A∗ =

1

ddetA









L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .
L1n L2n . . . Lnn









(4.6)

(RA)−1 = A∗ (AA∗)−1 =
1

ddetA∗









R 11 R 21 . . . R n1

R 12 R 22 . . . R n2

. . . . . . . . . . . .
R 1n R 2n . . . R nn









(4.7)

and Lij = cdetj(A
∗A). j (a∗. i), R ij = rdeti(AA∗)i.

(

a∗j .

)

for all i, j = 1, n.

Remark 4.21. In the Theorem 4.20, the inverse matrix A−1 of an arbitrary matrix A ∈
M(n, H) under the assumption of ddetA 6= 0 is represented by the analog of the classical

adjoint matrix. If we denote this analog of the adjoint matrix over H by Adj[[A]], then the

next formula is valid over H:

A−1 =
Adj[[A]]

ddetA
.

An obvious consequence of a determinantal representation of the inverse matrix by the

classical adjoint matrix is Cramer’s rule.

Theorem 4.22. Let

A · x = y (4.8)

be a right system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn)T ∈ Hn×1, and a column of unknowns x = (x1, . . . , xn)T . If

ddetA 6= 0, then (4.8) has a unique solution that has represented as follows,

xj =
cdetj(A

∗A).j (f)

ddetA
, ∀j = 1, n (4.9)

where f = A∗y.

Theorem 4.23. Let

x · A = y (4.10)

be a left system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn) ∈ H1×n and a column of unknowns x = (x1, . . . , xn). If

ddetA 6= 0, then (4.10) has a unique solution that has represented as follows,

xi =
rdeti (AA∗)i. (z)

ddetA
, ∀i = 1, n (4.11)

where z = yA∗.
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Equations (4.9) and (4.11) are the obvious and natural generalizations of Cramer’s rule

for systems of linear equations over a quaternion division algebra. As follows from the

Theorem 4.8, the closer analog to Cramer’s rule can be obtained in the following specific

cases.

Theorem 4.24. Let A ∈ M(n, H) be Hermitian in (4.8). Then the solution of (4.8) has

represented by the equation,

xj =
cdetjA.j (y)

det A
, ∀j = 1, n.

Theorem 4.25. Let A ∈ M(n, H) be Hermitian in (4.10). Then the solution of (4.10) has

represented as follows,

xi =
rdetiAi. (y)

det A
, ∀i = 1, n.

An application of the column-row determinants in the theory of generalized inverse

matrices over the quaternion skew field recently has been received in [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38].

5. Quasideterminants over a Quaternion Division Algebra

Theorem 5.1. Suppose a matrix

A =





a11 ... a1n

... ... ...
an1 ... ann





with entries from a quaternion division algebra has an inverse A−1.2 Then a minor of the

inverse matrix satisfies the following equation, provided that the inverse matrices exist

((A−1)IJ )−1 = AJI −A.I
J.(A

JI)−1AJ.
.I (5.1)

Proof. Definition of an inverse matrix leads to the system of linear equations

AJI(A−1)I.
.J + AJ.

.I(A
−1)IJ = 0 (5.2)

A.I
J.(A

−1)I.
.J + AJI(A

−1)IJ = I (5.3)

where I is a unit matrix. We multiply (5.2) by
(

AJI
)−1

(A−1)I.
.J + (AJI)−1AJ.

.I(A
−1)IJ = 0 (5.4)

Now we can substitute (5.4) into (5.3)

AJI(A
−1)IJ −A.I

J.(A
JI)−1AJ.

.I(A
−1)IJ = I (5.5)

(5.1) follows from (5.5).

2This statement and its proof are based on statement 1.2.1 from [17] (page 8) for matrix over free division

ring.
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Corollary 5.2. Suppose a matrix A has the inverse matrix. Then elements of the inverse

matrix satisfy to the equation

((A−1)ij)
−1 = aji − A.i

j.(A
ji)−1A

j.
.i (5.6)

Example 5.3. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.6)

(A−1)11 = (a11 − a12(a22)
−1 a21)

−1 (5.7)

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1 (5.8)

(A−1)12 = (a12 − a11(a21)
−1 a22)

−1 (5.9)

(A−1)22 = (a22 − a21(a11)
−1 a12)

−1 (5.10)

We call a matrix

HA = ((HA)ij) = ((aji)
−1) (5.11)

a Hadamard inverse of3 A.

Definition 5.4. The (ji)-quasideterminant of A is formal expression

|A|ji = (HA−1)ji = ((A−1)ij)
−1 (5.12)

We consider the (ji)-quasideterminant as an element of the matrix |A| , which is called a

quasideterminant.

Theorem 5.5. Expression for the (ji)-quasideterminant has form

|A|ji = aji −A.i
j.(A

ji)−1A
j.
.i (5.13)

|A|ji = aji −A.i
j. H|Aji|Aj.

.i (5.14)

Proof. The statement follows from (5.6) and (5.12).

Example 5.6. Let

A =

(

1 0
0 1

)

(5.15)

It is clear from (5.7) and (5.10) that (A−1)11 = 1 and (A−1)22 = 1. However

expression for (A−1)21 and (A−1)12 cannot be defined from (5.8) and (5.9) since (a21−

a22(a12)
−1 a11)

−1 = (a12−a11(a21)
−1 a22)

−1 = 0. We can transform these expressions.

For instance

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1

= (a11((a11)
−1 a12 − (a21)

−1 a22))
−1

= ((a21)
−1 a11(a21(a11)

−1 a12 − a22))
−1

= (a11(a21(a11)
−1 a12 − a22))

−1 a21

3See also page 4 in paper [16].
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It follows immediately that (A−1)21 = 0. In the same manner we can find that (A−1)12 =
0. Therefore,

A−1 =

(

1 0

0 1

)

(5.16)

From the Example 5.6 we see that we cannot always use Equation (5.6) to find elements

of the inverse matrix and we need more transformations to solve this problem. From the

theorem 4.6.3 in the paper [9], it follows that if

rank





a11 ... a1n

... ... ...

an1 ... ann



 ≤ n − 2

then |A|ij for all i, j = 1, n is not defined. From this, it follows that although a quasideter-

minant is a powerful tool, use of a determinant is a major advantage.

Theorem 5.7. Let a matrix A have an inverse. Then for any matrices B and C equation

B = C (5.17)

follows from the equation

BA = CA (5.18)

Proof. Equation (5.17) follows from (5.18) if we multiply both parts of (5.18) over A−1.

Theorem 5.8. The solution of a nonsingular system of linear equations

Ax = b (5.19)

is determined uniquely and can be presented in either form4

x = A−1b (5.20)

x = H|A| b (5.21)

Proof. Multiplying both sides of (5.19) from left by A−1 we get (5.20). Using the Defini-

tion 5.4, we get (5.21). Since the Theorem 5.7, the solution is unique.

6. Relation of Row-Column Determinants

with Quasideterminants

Theorem 6.1. If A ∈ M(n, H) is an invertible matrix, then, for arbitrary p, q = 1, n, we

have the following representation of the pq-quasideterminant

| A |pq=
ddetA · cdetq(A∗A). q

(

a∗. p
)

n(cdetq(A∗A). q

(

a∗. p
)

)
, (6.1)

4See similar statement in the theorem 1.6.1 in the paper [17] on pagen 19.

Complimentary Contributor Copy



320 Aleks Kleyn and Ivan I. Kyrchei

| A |pq=
ddetA · rdetp(AA∗)p .

(

a∗q .

)

n(rdetp(AA∗)p .

(

a∗q .

)

)
. (6.2)

Proof. Let A−1 = (bij) to A ∈ M(n, H). Equation (5.12) reveals the relationship between

a quasideterminant | A |p,q of A ∈ M(n, H) and elements of the inverse matrix A−1 =
(bij), namely

| A |pq= b−1
qp

for all p, q = 1, n. At the same time, the theory of row and column determinants (the

theorem 4.20) gives us representation of the inverse matrix through its left (4.6) and right

(4.7) double cofactors. Thus, accordingly, we obtain

| A |pq= b−1
qp =

(

Lpq

ddetA

)−1

=

(

cdetq(A
∗A). q

(

A∗
. p

)

ddetA

)−1

, (6.3)

| A |pq= b−1
qp =

(

Rpq

ddetA

)−1

=

(

rdetp(AA∗)p .

(

A∗
q .

)

ddetA

)−1

. (6.4)

Since ddetA 6= 0 ∈ F, then ∃(ddetA)−1 ∈ F. It follows that

cdetq(A
∗A). q

(

A∗
. p

)−1
=

cdetq(A∗A). q

(

A∗
. p

)

n(cdetq(A∗A). q

(

A∗
. p

)

)
, (6.5)

rdetp(AA∗)p .

(

A∗
q .

)−1
=

rdetp(AA∗)p .

(

A∗
q .

)

n(rdetp(AA∗)p .

(

A∗
q .

)

)
. (6.6)

Substituting (6.5) into (6.3), and (6.6) into (6.4), we accordingly obtain (6.1) and (6.2).

We proved the theorem.

Equation (6.1) gives an explicit representation of a quasideterminant | A |p,q of A ∈
M(n, H) for all p, q = 1, n by the column determinant of its corresponding left Hermitian

matrix A∗A, and (6.2) does by the row determinant of its corresponding right Hermitian

matrix AA∗.

Example 6.2. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.13)

|A| =

(

a11 − a12(a22)
−1 a21 a12 − a11(a21)

−1 a22

a21 − a22(a12)
−1 a11 a22 − a21(a11)

−1 a12

)

(6.7)

Our goal is to find this quasideterminant using the Theorem 6.1. It is evident that

A∗ =

(

a11 a21

a12 a22

)

A∗A =

(

n(a11) + n(a21) a11a12 + a21a22

a12a11 + a22a21 n(a12) + n(a22)

)

.
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Calculate the necessary determinants

ddetA = rdet1(A
∗A)

= (n(a11) + n(a21)) · (n(a12) + n(a22))

−(a11a12 + a21a22) · (a12a11 + a22a21)
= n(a11)n(a12) + n(a11)n(a22) + n(a21)n(a12) + n(a21)n(a22)

−a11a12a12a11 − a11a12a22a21 − a21a22a12a11 − a21a22a22a21

= n(a11)n(a22) + n(a21)n(a12) − (a11a12a22a21 + a11a12a22a21)

= n(a11)n(a22) + n(a21)n(a12) − t(a11a12a22a21)

cdet1(A
∗A).1(a

∗
.2) = cdet1

(

a21 a11a12 + a21a22

a22 n(a12) + n(a22)

)

= n(a12)a21 + n(a22)a21 − a11a12a22 − a21a22a22

= n(a12)a21 − a11a12a22.

Then

cdet1(A∗A).1(a∗.2) = n(a12)a21 − a22a12a11,

n(cdet1(A
∗A).1(a

∗
.2)) = cdet1(A∗A).1(a∗.2) · cdet1(A

∗A).1(a
∗
.2)

= (n(a12)a21 − a22a12a11) · (n(a12)a21 − a11a12a22)
= n2(a12)n(a21) − n(a12)a21a11a12a22

−n(a12)a22a12a11a21 + a22a12a11a11a12a22

= n(a12)(n(a12)n(a21) − t(a11a12a22a21) + n(a21)n(a12))

= n(a12)ddetA.

Following (6.1), we obtain

|A|21 =
ddetA

n(cdet1(A∗A).1(a
∗
.2))

cdet1(A∗A).1(a∗.2)

=
ddetA

n(a12)ddetA
cdet1(A∗A).1(a

∗
.2)

=
1

n(a12)
· cdet1(A∗A).1(a∗.2)

=
1

n(a12)
· (n(a12)a21 − a22a12a11)

= a21 − a22(a12)
−1a11.

(6.8)

The last expression in (6.8) coincides with the expression |A|21 in (6.7).

7. Conclusion

In the chapter we consider two approaches to define a noncommutative determinant,

row-column determinants and quasideterminants. These approaches of studying of a matrix

with entryes from non commutative division ring have their own field of applications.

The theory of the row and column determinants as an extension of the classical defi-

nition of determinant has been elaborated for matrices over a quaternion division algebra.

It has applications in the theories of matrix equations and of generalized inverse matrices
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over the quaternion skew field. Now it is in development for matrices over a split quaternion

algebra. In the chapter we have extended the concepts of an immanant, a permanent and a

determinant to a split quaternion algebra and have established their basic properties.

Quasideterminants of Gelfand-Retax are rational matrix functions that requires the in-

vertibility of certain submatrices. Now they are widely used. Though we can use quaside-

terminant in any division ring,5 row-column determinant is more attractive to find solution

of system of linear equations when division ring has conjugation.

In the chapter we have derived relations of row-column determinants with quasideter-

minants of a matrix over a quaternion division algebra. The use of equations (6.1) and (6.2)

allows us direct calculation of quasideterminants. It already gives significance in establish-

ing these relations.
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