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RELATION OF ROW-COLUMN DETERMINANTS
WITH QUASIDETERMINANTS OF MATRICES g\

OVER A QUATERNION ALGEBRA, Q
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of Mechanics and Mathematics, Ly ne

N

Since product of quaternions is noncommutagive, there is a problem how to determine a
determinant of a matrix with nox g- utative elements (it’s called a noncommutative
determinant). We considero hes to define a noncommutative determinant.

Primarily, there are row — (€olummn determinants that are an extension of the classical

definition of the det wever we assume predetermined order of elements

in each of the terms'Qf theWdeterminant. In the chapter we extend the concept of an

immananty(per , determinant) to a split quaternion algebra using methods of the
theory of t d'column determinants.

Pr ie e determinant of a Hermitian matrix are established. Based on

e erfies, analogs of the classical adjont matrix over a quaternion skew field

€ tained. As a result we have a solution of a system of linear equations

oyer afquaternion division algebra according to Cramer’s rule by using row—column

determinants.
Quasideterminants appeared from the analysis of the procedure of a matrix in-
A version. By using quasideterminants, solving of a system of linear equations over a

quaternion division algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quaside-
terminants is that we have not one determinant of a quadratic matrix of order n with
noncommutative entries, but certain set (there are n? quasideterminants, n row deter-
minants, and n column determinants). We have obtained a relation of row-column
determinants with quasideterminants of a matrix over a quaternion division algebra.
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1. Introduction

Linear algebra is a powerful tool that we use in different areas of mathematics, including
the calculus, the analytic and differential geometry, the theory of differential equations, and
the optimal control theory. Linear algebra has accumulated a rich set of different methods.
Since some methods have a common final result, this gives us the opportunity to choose the
most effective method, depending on the nature of calculations.

At transition from linear algebra over a field to linear algebra over a divisio
we want to save as much as possible tools that we regularly use. Alregdyi
XX century, shortly after Hamilton created a quaternion algebra, mather%

tiphi

to search the answer how looks like the algebra with noncommuta
particular, there is a problem how to determine a determinant of ix With elements
belonging to a noncommutative ring. Such determinant i alk oncommutative
determinant. \“

There were a lot of approaches to the definition @ 0
However none of the introduced noncommutative d
erties that determinant possessed for matricgssg

mutative determinant.
s maintained all those prop-

a ~Moreover, in paper [1], J. Fan
in hich would expands the definition
yver the division ring of quaternions. There-
ne a noncommutative determinant is still

of determinant of real matrices for matrices
fore, search for a solution of the prg
going on.

In this chapter, we consi
Namely, we explore row-

Row-column determ
nant, however gve edetermined order of elements in each of the terms of the
determinant. Us olumn determinants, we obtain a solution of a system of linear
equations ov€r a rnion division algebra according to Cramer’s rule.

ilant appeared from the analysis of the procedure of a matrix inversion.
terminant, solving of a system of linear equations over a quaternion division
milar to the Gauss elimination method.

There is common in definition of row and column determinants and quasideterminant.

oth cases, we have not one determinant in correspondence to quadratic matrix of or-
der n with noncommutative entries, but certain set (there are n? quasideterminant, n row
determinants, and n column determinants).

Today there is wide application of quasideterminants in linear algebra ([2, 3]), and in
physics ([4, 5, 6]). Row and column determinants ([7, 8]) introduced relatively recently
are less well known. Purpose of the chapter is establishment of a relation of row-column
determinants with quasideterminants of a matrix over a quaternion algebra. The authors are
hopeful that the establishment of this relation can provide mutual development of both the
theory of quasideterminants and the theory of row-column determinants.
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1.1. Convention about Notations

There are different forms to write elements of a matrix. In this paper, we denote a;; an
element of the matrix A. The index ¢ labels rows, and the index j labels columns.
We use the following notation for different minors of the matrix A.

a;  the i-th row

Ag. the minor obtained from A by selecting rows with index from the set S
A% the minor obtained from A by deleting row a; .

A®-  the minor obtained from A by deleting rows with index from the set S
a_; the j-th column

A 7 the minor obtained from A by selecting columns with index from e@

A7 the minor obtained from A by deleting column a, j Q
AT the minor obtained from A by deleting columns with‘ind%’n esetT
\x y the column b
A; (b) the matrix obtained from A by replacing itg ¢ by the row b
Considered notations can be combined Qﬂhe record

Ab)

A j(b) the matrix obtained from A by replacing its j-

means replacing of the k-th row by@ctor b followed by removal of both the i-th row

and the ¢-th column.
As was noted in sectio@ the paper [9], we can define two types of matrix products:
St

either product of rows o trix over columns of second one, or product of columns of
first matrix ovegro edond one. However, according to the theorem 2.2.5 in the paper
[9], this product tric relative operation of transposition. Hence in the chapter, we
will restrict rs& by traditional product of rows of first matrix over columns of second

one;@nd w indicate clearly the operation like it was done in [9].
2. minaries. A Brief Overview of the Theory of Noncommutative
Determinants

Theory of determinants of matrices with noncommutative elements can be divided into
three groups regarding their methods of definition. Denote M(n, K) the ring of matrices
with elements from the ring K. One of the ways to determine determinant of a matrix of
M (n, K) is following ([11, 12, 13]).

Definition 1.1. Let the functional
d:M(n,K)—K

satisfy the following axioms.

N2
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Axiom 1. d (A) = 0 iff A is singular (irreversible).
Axiom 2. VA, B €M (n,K), d(A-B)=d(A)-d(B).

Axiom 3. If we obtain a matrix A’ from matrix A either by adding of an arbitrary
row multiplied on the left with its another row or by adding of an arbitrary column
multiplied on the right with its another column, then

d(A") =d(A)

Then the value of the functional d is called determinant of A € M (n, K). ]

in some commutative subset of the ring. It makes no sense for them suchgrop€rt
ventional determinants as the expansion along an arbitrary row or colum\ere ore a
determinantal representation of an inverse matrix using only these de 1nAntsHis impossi-
ble. This is the reason that causes to introduce determinant functigmals$hat do not satisfy
all Axioms. Dyson [13] considers Axiom 1 as necessary toge i eterminant.

In another approach, a determinant of a square matrix over commutative ring is

considered as a rational function of entries of a matr atest success is achieved
by Gelfand and Retakh [14, 15, 16, 17] in the the sideterminants. We present
introduction to the theory of quasidetermina @l ns.

In third approach, a determinant of a § at ver a noncommutative ring is con-

sidered as an alternating sum of n! productsfof entries of a matrix. However, it assumed
certain fixed order of factors in each . E. H"Moore was first who achieved implementa-
tion of the key Axiom 1 using such @mn of a noncommutative determinant. Moore had
done this not for all square matfices nly for Hermitian. He defined the determinant of

a Hermitian matrix! A = er a division ring with involution by induction over n
following way (see [1

aii, n=1
n
etA S essaiMdet (A(i — 7)), n>1 (1.1
j=1
ere £g; — _1’ z ; j ,and A (i — j) denotes the matrix obtained from A by replac-

7-th column with the i-th column and then by deleting both the i-th row and column.
other definition of this determinant is presented in [11] by using permutations,

Mdet A = E |U|an11n12 Tt Qngpngg Gngingg st OGnggyngy -
O’GSn

Here S,, is symmetric group of n elements. A cycle decomposition of a permutation ¢ has
form,
g = (’I’LH .. -nlll) (’I’L21 .. .’I’Lglz) .. .(’I’Lrl .. -nrlr) .

'Hermitian matrix is such matrix A = (a;;) that a;; = @jq.
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However, there was no any generalization of the definition of Moore’s determinant to
arbitrary square matrices. Freeman J. Dyson [13] pointed out the importance of this prob-
lem.

L. Chen [18, 19] offered the following definition of determinant of a square matrix over
the quaternion skew field H, by putting for A = (a;;) € M (n, H),

det A = Z 6(0)(1”1@-2 *Qjgig eo ot Qigmq v oo Ay = oo Qg s
UGSn
o= (nyig...is)...(npka... k),
Ny > 09,13, ...,%0s;...,Np > ko, ks, ..., ki,

n=ny>ng>...>n, > 1.

Despite the fact that this determinant does not satisfy Axiom 1, L. Chen got a determing
representation of an inverse matrix. However it can not been expanded along arbitra @
and columns (except for n-th row). Therefore, L. Chen did not obtain aglagsicalad}e
matrix as well. For A = (ay,...,q;) over the quaternion skew field \ I

det(A*A) # 0, then JA~! = (b;z), where Q

Wgj = det (041 e e Re 7710 7 RN I Oén_lék)* (041 @ Qjiq .. .ozn_lozj) .

Here «; is the i-th column of A, d; is the n-di si Blumn with 1 in the k-th entry
and 0 in other ones. L. Chen defined || 6 d ) as the double determinant. If

||A || # 0, then the solution of a right syste inear equations

n

J lozjzvj:ﬁ

over H is represented by the f@ rmula, which the author calls Cramer’s rule
—13~
zj = [[A] "Dy,

for all j = 1—’ n" @Q
ap
D]’:det * (Oq Oéj_l (7% Oéj-H N o 7o | Oéj).
A "

Here o is the i-th row of A* and (3* is the n-dimensional vector-row conjugated with 3.

In this chapter we explore the theory of row and column determinants which develops
the classical approach to the definition of determinant of a square matrix, as an alternating
sum of products of entries of a matrix but with a predetermined order of factors in each of
the terms of the determinant.




304 Aleks Kleyn and Ivan I. Kyrchei

2. Quaternion Algebra

9

b
A quaternion algebra H(a,b) (we also use notation (%) ) is a four-dimensional

vector space over a field F with basis {1, 7, j, k} and the following multiplication rules:

n:xe€H—-n(z)elF

such that Q\
n(x-y) =n(a)n(y) @y SH 6

is called the norm on a quaternion algebra H.

e The linear mapping :Q\

t:x =24z + 22 t(z)=22" ¢ F

The field F is the center of the quaternion algebra H(a, ).
In the algebra H(a, b) there are following mappings. 4
e A quadratic form . Q

is called the trace of a quaternion. Theytrace satisfies permutability property of the

trace,
@-p) =t(p-q)-
From the theorem 1 @ paper [9], it follows
t(z)

1 L
. = §($ — izl — jrj — kxk). 2.1

roul
r—T=t(z)—z (2.2)

T=ux,
r+y=7T+7,
TY=7-T

A quaternion 7 is called the conjugate of z € H. The norm and the involution satisfy
the following condition:

n(g) = n(q)-

The trace and the involution satisfy the following condition,

t(z) = t(x).
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From equations (2.1), (2.2), it follows that
1
T = —§($ +izi + jxj + kxk).

Depending on the choice of the field F, a and b, on the set of quaternion algebras there
are only two possibilities [20]:

b
1. aﬁ? > is a division algebra.

b
2. (aI’E‘ > is isomorphic to the algebra of all 2 x 2 matrices with entries from the field

[F. In this case, quaternion algebra is splittable.
The most famous example of a non-split quaternion algebra is Hamilton’s quate S
H= (_1[9&_1 ), where R is real field. The set of quaternions can be represented as

H={q=q0+qi+qj+aek oaq gaaeacR), ¢
\quaternion

where i = j2 = k> = —1 and ijk = —1. Consider some non-iSeforphi
algebra with division. .
b c] ?
1. (%) is isomorphic to the Hamilton quaternion ske\x henever a < 0 and
. (abY .
b < 0. Otherwise <@> is splittable. Q

2. If IF is the rational field Q, then th

8t 1 ely many nonisomorphic division

b
quaternion algebras (a;> dependingien choice of ¢ < 0 and b < 0.

Q

3. Let Q, be the p-adic field @ a prime number. For each prime number p there
is a unique division quat@rnion algebra.

The famous exampléhof a‘Split quaternion algebra is split quaternions of James Cockle

HS(%), whigh c@ esented as
¥ q=qo+ @i+ q2j +a3k; qo,q1, 42,3 € R},

Q’2 = k? = 1 and ijk = 1. Unlike quaternion division algebra, the

aternions is a noncommutative ring with zero divisors, nilpotent elements
al idempotents. Recently there was conducted a number of studies in split
ernion matrices (see, for ex. [21, 22, 23, 24]).

3. Introduction to the Theory of the Row and Column
Determinants over a Quaternion Algebra

The theory of the row and column determinants was introduced [7, 8] for matrices over
a quaternion division algebra. Now this theory is in development for matrices over a split
quaternion algebra. In the following two subsections we extend the concept of immanant
(permanent, determinant) to a split quaternion algebra using methods of the theory of the
row and column determinants.
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3.1. Definitions and Properties of the Column and Row Immanants

The immanant of a matrix is a generalization of the concepts of determinant and per-
manent. The immanant of a complex matrix was defined by Dudley E. Littlewood and
Archibald Read Richardson [25] as follows.

Definition 3.1. Let o € S,, denote the symmetric group on n elements. Let x : S,, — C be
a complex character. For any n x n matrix A = (a;;) € C"*" define the immanent of A

as
Imm, (A) = Z H Qi o(i)

oESh

Special cases of immanants are determinants and permanents. In the case where
constant character (x(z) = 1forall z € S,), Imm, (A) is the permanent of A. In tl
where Y is the sign of the permutation (which is the character of the permgtat'
sociated to the (non-trivial) one-dimensional representation), Imm, (A) is ter
of A.

Denote by H™*"™ a set of n x m matrices with entries in an arbi (split) quaternion
algebra H and M (n, H) a ring of matrices with entries in H, Fo féij € M (n, H) we
define n row immanants as follows.

Definition 3.2. The i-th row immanant of A = (a;;) is defined by putting
rImmlA = Z X(O’)a“'kl aiklikl 7 lli . aikrikr+1 e aikr‘”rikr’
O’GSn
where left-ordered cycle notation of the per tion o is written as follows
(4 0k iky+1 - 1 o lkgtly) s (Bt - Tkg) - (3D

Here the index © starts the_firSk cy from the left and other cycles satisfy the following
conditions

<y < oo <k, Ty < Thyts- 3.2)
forallt =2,ra ly.

have the following definitions.
Defi n 33. The i-th row permanent of A = (a;j) € M (n, H) is defined as
rperl-A = Z a“-kl (Iiklik1+1 .. .aik1+l1i N aikrikr+1 .. 'aierrikr’
0ESh

where left-ordered cycle notation of the permutation o satisfies the conditions (3.1) and
(3.2).

Definition 3.4. The i-th row determinant of A = (a;;) € M (n, H) is defined as
n—r
rdetiA = Z (—1) a“-kl aiklik1+1 .. .a,l']q“ll' e aikrikr+1 .. 'aikr+lrikr’
O’GSn

where left-ordered cycle notation of the permutation o satisfies the conditions (3.1) and
(3.2), (since sign(c) = (—1)""").

o
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For A = (ai;) € M (n, H) we define n column immanants as well.

Definition 3.5. The j-th column immanant of A = (a;;) € M (n, H) is defined as

CImmjA = E : X(T)ajkrjmur o Qg Gk Y Gy By 419k Vg I
TESH

where right-ordered cycle notation of the permutation T € Sy, is written as follows O *

T = Uketle - Ik t1dhy) -+ - Ukatly -+ - Jhat10k2) (Gl - Ty 41700 d) - (3.3) \

Here the first cycle from the right begins with the index j and other cycles satisfy the fol-

lowing conditions
Tky <Jky <o <Jkes Jke < Jhi+tss Q\
forallt=2,rands = 1,1, g Q
Consequently we have the following definitions as well. 9\
Definition 3.6. The j-th column permanent of A = (a;;) €M @ ned as
rper; A = Z Ak Ghr iy k1 dhy - "@\hM#&]kl Ay >
TESh :

where right-ordered cycle notation of the n g¥satisfies the conditions (3.3) and
(3.4).

Definition 3.7. The j-th column detegiginant of A = (a;;) € M (n, H) is defined as
rdetjA = Z (1)"%@@ Y Y RS NP Y R
TGSn

where right-ordere tation of the permutation o satisfies the conditions (3.3) and
(3.4).

Coasidefithe properties of the column and row immanants over H.
Pro oni3.8. (The first theorem about zero of an immanant) If one of the rows (columns)
of A n, H) consists of zeros only, then rImm; A = 0 and cImm; A = 0 for all
0= 1,n.
oof. The proof immediately follows from the definitions. U

Denote by Ha and aH left and right principal ideals of H, respectively.

Proposition 3.9. (The second theorem about zero of an row immanant) Let A = (a;j) €
M (n,H) and ax; € Ha; and a;; € @H, where n(a;) = 0 for k, j = 1, nand for all i # k.
Let a11 € Haq and ase € aiH if k = 1, and apr € Hay and a1 € apH if k = 7 > 1,
where n(ay) = 0. Then rImmy A = 0.
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Proof. Let i # k. Consider an arbitrary monomial of rlmmyA, if ¢ £ k,
d= X(U)akiaij e Al

where {{,m} C {1, ...,n}. Since there exists a; € H such that n(a;) = 0, and ax; € Ha,,
aij € a;H, than OkiGi5 = Oand d = 0.
Let ¢ = k = 1. Then an arbitrary monomial of rImm; A,

d= X(U)anagg e Al

Since there exists a; € H such thatn(ay) = 0,and a1; € Hay, ass € a1H, then ajiaze =0
and d = 0.
If k =4 > 1, then an arbitrary monomial of rlmmy A,

d = x(0)agkaii - - - apm. *

Since there exists a;, € H such that n(ax) = 0, and ai, € Hayg, aq1 W\%n =

O

0and d = 0.
wor)
Proposition 3.10. (The second theorem about zero of a% ghmanant) Let A =
k

(aij) € M (n,H) and a;, € a;H and aj; € Ha;, whey 0 for k,j = 1,n and
foralli # k. Let a;1 € a1H and aso € Hay if k =4, %n

€ axH and a11 € Hay, if
k=1 > 1, where n(ay) = 0. Then clmm;A_=

Proof. The proof is similar to the proof o oposition 3.9. U
The proofs of the next theorems @diat follow from the definitions.

Proposition 3.11. Ifthe i-th ro

#a;j) € M (n, H) is left-multiplied by b € H, then
ralli =1,n.

Proposition 3.12. If@: cotumn of A = (a;5) € M (n, H) is right-multiplied by b € H,

Imm; A -bforallj =1,n.

then cImm; A %{
Proposi 'on@ or A = (ai;) € M (n,H) there exists t € {1, ...,n} such that a;; =

iz 1,n, then foralli = 1,n

rImm; A = rImm; A; (b) + rImm; A, (c),

Q cImm; A = cImm; A, (b) 4+ cImm; A; (c),
ereb=(b1,...,by), c=(c1,...,cn).

Proposition 3.14. If for A = (a;;) € M (n, H) there exists t € {1, ...,n} such that a;; =
b; +c; foralli =1,n, thenforall j = 1,n

rlmm; A = rImm; A ; (b) + rImm; A ;(c),
cImm; A = cImm; A ; (b) + cImm;A ;(c),

where b = (by,...,b,)", c = (c1,...,ca)T.

N2

4
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Proposition 3.15. If A* is the Hermitian adjoint matrix (conjugate and transpose) of A €
M (n, H), then rImm; A* = cImm; A foralli =1, n.

Particular cases of these properties for the row-column determinants and permanents
are evident.

Remark 3.16. The peculiarity of the column immanant (permanent, determinant) is that,
at the direct calculation, factors of each of the monomials are written from right to left. [

In Lemmas 3.17 and 3.18, we consider the recursive definition of the column and row
determinants. This definition is an analogue of the expansion of a determinant along a row
and a column in commutative case.

Lemma 3.17. Let R;; be the rightij-th cofactor of A = (a;;) € M (n, H), namel

rdetl-A = Z CLZ']' . Rij

forall i =1,n. Then Q\%

Ry, — { —rdet; (A%(a ;

rdety, A%,
2, i=1
-
where the matrix (A” ) is obtained fro by replacing its j-th column with the i-th

column and then by deletmg both t@ ow and column. U
Lemma 3.18. Let L;; be t@ cofactor of entry a;j of matrix A = (a;;) €

M (n, H), namely
@ cdetjA: ZLU'CLU
i=1

forall j = 1
_ [ —edeti (AY(a;), i
Lij cdety, A7, i=3j
_J2, j=1
k= {1, j>1
where the matrix (Af] (aj.)) is obtained from A by replacing its ith row with the jth and
then by deleting both the jth row and column. ]

Remark 3.19. Clearly, an arbitrary monomial of each row or column determinant cor-
responds to a certain monomial of another row or column determinant such that both of
them have the same sign, consist of the same factors and differ only in their ordering. If
the entries of A are commutative, then rdet1 A = ... = rdet,A = cdet; A = ... =
cdet, A. O

\ﬁ\c"
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4. An Immanant of a Hermitian Matrix

If A* = A then A € H"*" is called a Hermitian matrix. In this section we consider
the key theorem about row-column immanants of a Hermitian matrix.
The following lemma is needed for the sequel.

Lemma 4.1. Let T), be the sum of all possible products of n factors, each of their are either
hi € H or h; for all i = 1, n, by specifying the ordering in the terms, T,, = h1 - hs -

.
hy + hy - ho - chp+ ...+ h1- hy- - hy. Then T, consists of the 2" terms and O
Ty =t (hn) t(h2) ... t(hn). \
Theorem 4.2. If A € M (n,H) is a Hermitian matrix, then
rlmm;A = ... = rImm, A = cImm; A = = cIlmm,A € Fﬁg\

Proof. At first we note that if A = (a;;) € H"*" is Hermitian, then we ha
aij = aj; forall i, j =1, n.

We divide the set of monomials of rImm; A for some ¢ g % into two subsets.
If indices of coefficients of monomials form permutationsyas ct§ of disjoint cycles
of length 1 and 2, then we include these monomials to th& t. Other monomials
belong to the second subset. If indices of coefficients @ ﬂ sjoint cycle of length 1, then

these coefficients are a;; for j € {1,...,n} and a;; €&
If indices of coefficients form a disjoin length 2, then these entries are conju-

gated, a;, i, ., = @i, 4y and

Qipiggy alk+1lk iy iy Wi = n(aik+1ik) eF.
So, all monomials of the first s n values in [F.
Now we consider so d of the second subset. Assume that its index permu-

tation o forms a direct p@ r disjoint cycles. Denote ¢, := ¢, then

dxa X

allellkl alkzlk2+1 N aiszzikz .. 'aikmikm+1 N (4 1)
Xa;, @ Zk alkrlk 1@ i, = X(0)hihe By By

iniras1 o i iy, foralls =1, andm € {1,...,7}. If I, = 1, then
il A Qi1 g, = n(aiksiksﬂ) e F. Ifl, = 0, then hy, = Qiy, i, clF. Ifl, =0

@: 1forall s = 1,rin (4.1), then d belongs to the first subset. Let there exists s € I,
t

hat I, > 2. Then

hs = @iy i1 Qi iy iy, = Qi ity - Figging 11 = Qinging sty + Vi 1n, -

Denote by o (ix,): = (ik.9k.+1 - - - Ik,+1,) @ disjoint cycle of indices of d for some s €
{1,...,7}, then 0 = oy (ik,) 02 (ik,) ...0r (i, ). The disjoint cycle o (i) corresponds
to the factor hy. Then o' (i) = (i, ik, 41,9k, 41 - - -9k, +1) is the inverse disjoint cycle
and o ! (ix,) corresponds to the factor h,. By the Lemma 4.1, there exist another 2P — 1
monomials for d, (where p = r — p and p is the number of disjoint cycles of length 1 and 2),
such that their index permutations form the direct products of r disjoint cycles either o5 (i, )
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or o; ! (iy,) by specifying their ordering by s from 1 to r. Their cycle notations are left-
ordered according the to the Definition 3.2. These permutations are unique decomposition
of the permutation ¢ including their ordering by s from 1 to 7. Suppose C] is the sum of
these 2P — 1 monomials and d, then, by the Lemma 4.1, we obtain

Cr = x(o)at(hy) ... t(h,) €F.

Here o € F is the product of coefficients whose indices form disjoint cycles of length 1 and

O ‘
2,vp €{1,...,r}forallk =1,p.
Thus for an arbitrary monomial of the second subset of rImm; A, we can find the 2P \

monomials such that their sum takes on a value in [F. Therefore, rImm; A € F.

Now we prove the equality of all row immanants of A. Consider an arbitrary rImp A
such that j # ¢ for all j =1,n. We divide the set of monomials of rImm; A i
subsets using the same rule as for rImm; A. Monomials of the first subse ar cts
entries of the principal diagonal or norms of entries of A. Therefore they t &
F and each monomial of the first subset of rImm; A is equal to a co a]x onomial
of the first subset of rImm; A.

Now consider the monomial d; of the second subset o % rImm; A con-
sisting of coefficients that are equal to the coefficients of & e in another order.
Consider all possibilities of the arrangement of coeffié

(i) Suppose that the index permutation ¢’ of its age % s form a direct product of r
disjoint cycles and these cycles coincide wi BGA cycles of d but differ by their

ordering. Then ¢’ = o and we have

d1 = X U ces )\,
where {u, ..., A} = {v,.. ., thg'Lemma 4.1, there exist 27 — 1 monomials of the
second subset of rImm; A su th each of them is equal to a product of p factors either
hg or h forall s € {p, . ce by the Lemma 4.1, we obtain
C’}— x(o) at(hy)... t(h,) = Ci.
(i) Now su ose\t in addition to the case (i) the index j is placed inside some disjoint
cyclgof t permutation o of d, e.g., j € {ik,,+1, -, bkl |- DENOtE Jj = ik, 1q.

Constderin he above said and o, 11 (ik,,+1) = Oky,+q(ik,.+q), We have o’ = 0. Then d;
ed as follows

is repre :
di = X(0) @iy, ginprasr - Bing i ik Vi ik i1 - X
Xaikmjtqflikmjtqaik“ikujtl Ce aik;ﬁjluiku Ce aik)\ik)\+1 Ce aik)\H)\ik)\
O = x(o)ahmhy ... hy,

where {m, p, ..., \} = {v1,...,1,}. Except for R, each factor of d; in (4.2) corresponds
to the equal factor of d in (4.1). By the rearrangement property of the trace, we have
t(hy) = t(h.,). Hence by the Lemma 4.1 and by analogy to the previous case, we obtain,

= 4.2)

Cy = x(0)a t(izm) t(hy) ... tlhy) =
=x(0) at(hy) ... t(hm) ... t(h,,) = Ci.
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(ii1) If in addition to the case (i) the index : is placed inside some disjoint cycles of the index
permutation of d;, then we apply the rearrangement property of the trace to this cycle. As
in the previous cases we find 2” monomials of the second subset of rImm; A such that by
Lemma 4.1 their sum is equal to the sum of the corresponding 27 monomials of rImm;A.
Clearly, we obtain the same conclusion at association of all previous cases, then we apply
twice the rearrangement property of the trace.

Thus, in any case each sum of 2P corresponding monomials of the second subset of
rImm; A is equal to the sum of 2” monomials of rImm; A. Here p is the number of
disjoint cycles of length more than 2. Therefore, for all 7, j = 1, n we have

rImm; A = rImm; A € F.

The equality cImm; A = rImm; A for all i = 1, n is proved similarly.

Remark 4.3. If A € H"*" is skew-hermitian (A = —A*), then the TMO S
meaningful. It follows from the next example

Example 4.4. Conszder the following skew-hermitian matrzx ove watermons of
James Cockle Hg (=2 7 Ly,

A= J Tl \\

—2+z

Since
rlmm; A = —jk — )=5+1,

rImmy A = —(—2 +z k‘]—5—z
then rImm; A # rImms A.

Since the Theorem 4.2, we h E@llowing definition.

Definition 4.5. Since all a d row immanants of a Hermitian matrix over H are
equal, we can define th mawmant (permanent, determinant) of a Hermitian matrix A €
H"™*"™, By deﬁn‘tzo oralli=1,n

Imm A :=rImm; A = clmm; A,

O\ per A := rper; A = cper; A,
% det A :=rdet; A = cdet; A.

@ Cramer’s Rule for System of Linear Equations over a Quaternion

Division Algebra

In this subsection we shall be consider H as a quaternion division algebra especially
since quasideterminants are defined over the skew field as well.

Properties of the determinant of a Hermitian matrix is completely explored in [7, 8] by
its row and column determinants. Among all, consider the following.

Theorem 4.6. If the i-th row of the Hermitian matrix A € M (n, H) is replaced with a left
linear combination of its other rows

a; = cra;, . + ...+ cra;, .

N2

4
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where ¢; € H foralll =1,k and {i,i;} C {1,...,n}, thenforalli=1n
CdetiAi.(Cl cay, . +...+ck-al-k,) :I"detl'Ai.(Cl -ay, . +...+ck-al-k.) =0.

Theorem 4.7. If the j-th column of a Hermitian matrix A € M (n, H) is replaced with a
right linear combination of its other columns

aj;j=aj c+...+aj ck

where ¢; € H foralll = 1,k and {j, j;} C {1,...,n}, thenforallj =1, n
cdetjA,j (a,jl 1+ ... taj, -Ck) :rdetjA,j (a.jl 1t ...t+ajy ¢ )
The following theorem on the determinantal representation of an inverse matrix

mitian follows immediately from these properties.

matrix (LA) of a nonsmgular Hermitian matrix A € M (n, H); where
(RA)™' = (LA)™! = A~1. Right inverse and left inverse matrz fo owing deter-

minantal representation \
n2
- R

Theorem 4.8. There exist a unique right inverse matrix (RA)~! and a um& t inverse
)

(RA)™
nn
Lnl
_ L
(LA) 1 _ n2 ’
L'I’L'I’L
where R;j;, L;; are right mEth cofactors of A, respectively, forall i,j = 1,n.

To obtain the d al representation for an arbitrary inverse matrix over a quater-
nion division algébr e consider the right A A* and left A* A corresponding Hermitian
matrices.

The . If an arbitrary column of A € H™*" is a right linear combination of

its other coimns, or an arbitrary row of A* is a left linear combination of its other rows,

det A*A = 0.
A ince principal submatrices of a Hermitian matrix are also Hermitian, then the basis

principal minor may be defined in this noncommutative case as a principal nonzero minor
of a maximal order. We also can introduce the notion of the rank of a Hermitian matrix by
principal minors, as a maximal order of a principal nonzero minor. The following theorem
establishes the correspondence between the rank by principal minors of a Hermitian matrix
and the rank of the corresponding matrix that are defined as a maximum number of right-
linearly independent columns or left-linearly independent rows, which form a basis.

Theorem 4.10 ([7]). A rank by principal minors of a Hermitian matrix A* A is equal to its
rank and a rank of A € H™*",
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Theorem 4.11 ([7]). If A € H™*"™, then an arbitrary column of A is a right linear com-
bination of its basic columns or arbitrary row of A is a left linear combination of its basic
rows.

It implies a criterion for the singularity of a corresponding Hermitian matrix.

Theorem 4.12 ([7]). The right linearly independence of columns of A € H™*™ or the left
linearly independence of rows of A* is the necessary and sufficient condition for

O
det A*A #£ 0 Q
Theorem 4.13 ([7]). If A € M (n, H), then det AA* = det A*A. \

In the following example, we shall prove the Theorem 4.13 for the case n = 2. \

Example 4.14. Consider the matrix A = (an a12> , then A* = (E‘ ¢
as1 a2 ai2 2

tively, we have
AA* — (anan + a12@12 Q11621 + G1202

a1a11 + ageai2  a21G21 a?ax
alla a21a a1, a
ACA = (T aen Tigis \X .
a12011 + G22021 @ 2
According to thw Theorem 4.2 and the Definition 4.5 e
*

12
det AA t AR,
det A*A =Rdet; A*A

According to the Lemma 3.17

det A )11(AA*)22 — (AA*)lg(AA*)Ql
=%@11011 + a12a12)(a21G21 + azasz)
* (@11@21 + a12832) (a2117T + a22G12)
\ = 111011021021 + A12012a21021
O +a11a11022022 + a12G12022022 ; 4.3)
—@11021021011 — 012022021011
—@11021022012 — 012022022012
= 112012021021 + A11011A22022
@ —a12G22021G1] — A11021022012
det A*A = (A*A)11(A*A)2 — (A*A)12(A*A)g
= (a11011 + G21021) (@12012 + G22022)
O —(@11a12 + G21a22)(@12011 + G22a21)
= 011011012012 + 021021012012
+ai1a11G22a22 + a21021G22022 . 4.4)
—G11012012011 — 021022012011
—G11012022021 — 021022022021
= (21021012012 + A11011022022
—G21022012011 — 011612022021
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Positive terms in equations (4.3), (4.4) are real numbers and they obviously coincide. To
prove equation

(12022021011 + A11021A22012 = (21022012011 + G11A12022021 4.5)

we use the rearrangement property of the trace of elements of the quaternion algebra,
t(pq) = t(gp). Indeed,

12022021011 + (11021022012 = (12022021011 + A12G22021411 = t(a12G22a21G11),
21022012011 + 11012022021 = G11012022021 + G11612022a21 = t(@11012022021)
Then by the rearrangement property of the trace, we obtain (4.5).

According to the Theorem 4.13, we introduce the concept of double determina
the first time this concept was introduced by L. Chen ([18]). .

Definition 4.15. The determinant of corresponding Hermitian matriegs j; N double
determinant of A € M (n, H), i.e.,, ddetA :=det (A*A) = det (AA

If H is the Hamilton’s quaternion skew field H, then t eorem establishes
the validity of Axiom 1 for the double determinant.

Theorem 4.16. If {A, B} C M (n, H), then ddet (As- detA - ddetB.
Unfortunately, if a non-Hermitian matrj 11 rank, then nothing can be said about
singularity of its row and column determi e show it in the following example.

Example 4.17. Consider the matrix Q

Its second row is obt Qhe first row by left-multiplying by k. Then, by the Theorem

4.12, ddet A —0 I
—z —] tog\ _ (2 =2
-7 g —i) \2k 2 )

Then ddet A= 4 + 4k‘2 = 0. However
cdet1 A = cdeto A = rdetq A = rdety A = —i% — j2 = 2.
t the same time rank A = 1, that corresponds to the Theorem 4.10.

The correspondence between the double determinant and the noncommutative determi-
nants of Moore, Stady and Dieudonné are as follows,

ddetA = Mdet (A*A) = SdetA = Ddet?A.
Definition 4.18. Let ddetA = cdet; (A*A) = > L;; - a;j for j = 1,n. Then L;; is
called the left double ij-th cofactor of A € M (n, H).

N2

4
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Definition 4.19. Let ddet A = rdet; (AA*) =" a;;-Ryjfori = 1,n. Then R;; is called
J
the right double ij-th cofactor of A € M (n, H).

Theorem 4.20. The necessary and sufficient condition of invertibility of a matrix A =
(ai;) € M(n, H) is ddetA # 0. Then IA~" = (LA)™' = (RA)™", where

Ly Loy ... Lp
1 L L ... L

LA —1: A*A —lA*: 12 22 n2 4.
(LA™ = (ATA) ddetA | oo e (4.6)

Li, Lo, ... Ly,

Rip Rop ... Ry

_ 1 R R ... R

RA_le* AA* 1: 12 22 n2 @
( ) ( ) ddetA* | ... ... ... .

Ri, Ro, ... R,

and ILZ']' = cdetj(A*A),j (af"l-), R ij = l"detl'(AA*)i. < for all 7

M(n, H) under the assumption of ddetA # 0 is represe analog of the classical
adjoint matrix. If we denote this analog of the adjoint 7 ver H by Adj[[A]], then the
next formula is valid over H.:

Remark 4.21. In the Theorem 4.20, the inverse matrix A\ ar itrary matrix A €
G f

An obvious consequence of a determinan
classical adjoint matrix is Cramer’s

representation of the inverse matrix by the

Theorem 4.22. Let

be a right system @ uatwns with a matrix of coefficients A € M(n, H), a column
a

of constants'y = € H™, and a column of unknowns x = (x1, . . ., :L‘n)T. If
ddetA # 0, s a unique solution that has represented as follows,
cdet;(A*A) ; (f) ,
. =1 4.9
T = JdotA ) Vj , 1 4.9)
ere f = A'y.
orem 4.23. Let
x-A=y 4.10)

be a left system of linear equations with a matrix of coefficients A € M(n, H), a column
of constants y = (y1,...,yn) € H' " and a column of unknowns x = (x1,...,x,). If
ddetA # 0, then (4.10) has a unique solution that has represented as follows,

_ rdet; (AAY), (z)
T ddetA

Vi=1,n (4.11)

where z = yA™.
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Equations (4.9) and (4.11) are the obvious and natural generalizations of Cramer’s rule
for systems of linear equations over a quaternion division algebra. As follows from the
Theorem 4.8, the closer analog to Cramer’s rule can be obtained in the following specific
cases.

Theorem 4.24. Let A € M(n,H) be Hermitian in (4.8). Then the solution of (4.8) has
represented by the equation,

cdet; A ; (y)
det A’

Theorem 4.25. Let A € M(n, H) be Hermitian in (4.10). Then the solution of (4.10) has
represented as follows,

€Tj = Vj:1,n.

rdet; A;. (y)
$. =
! det A 7 .
An application of the column-row determinants in the theory of gen&2

matrices over the quaternion skew field recently has been received )
31, 32, 33, 34, 35, 36, 37, 38].

5. Quasideterminants over a Quaterni \on Algebra
Theorem 5.1. Suppose a matrix

Gnn

Vi=1,n.

inverse
29, 30,

with entries from a quaternionfivis 'gebra has an inverse A™1.2 Then a minor of the
inverse matrix satisfies thegellowinglequation, provided that the inverse matrices exist

)t =A — AFATHTIAY (5.1

verse matrix leads to the system of linear equations

Proof. Deﬁb
% AT(ATY + A% (AT =0 (5.2)

AJA Y+ A Ay =1 (5.3)

(A5 + (AT TAG (A =0 (5.4)

A%e I is a unit matrix. We multiply (5.2) by (A7’ )_1

Now we can substitute (5.4) into (5.3)
Ajf(A Y — AFADHTIAL AT, =1 (5.5)

(5.1) follows from (5.5). O

This statement and its proof are based on statement 1.2.1 from [17] (page 8) for matrix over free division
ring.
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Corollary 5.2. Suppose a matrix A has the inverse matrix. Then elements of the inverse
matrix satisfy to the equation

(A D) = a5 — Af (A7) 1A (5.6)

Example 5.3. Consider a matrix

GO
According to (5.6) \Q
1

5.7

a Hadamard inverse of> A..

We call a matrix Q
HA = ((HA);;) = ((%)1)\6 (5.11)

Definition 5.4. The (ji)-quasideterminant of A is for:

|Alji = (HA™ Dgme=((A (5.12)
We consider the (ji)-quasideterminant as ment of the matrix |A|, which is called a
quasideterminant.
Theorem 5.5. Expression for the ( sideterminant has form
i — AS(AT)TTAY (5.13)

— A H|AT| AT, (5.14)

Proof. The stalt e@?ﬁ;m (5.6) and (5.12). O
7o)
A= (1 0) (5.15)

01

s clearfrom (5 7) and (5.10) that (A=Y = 1 and (A7')ye = 1. However
sswnfor - ) 01 and (A~1)12 cannot be defined from (5.8) and (5.9) since (a1 —

2(a12) a11 = (a12 —ai1(az1)” ! a22)_1 = 0. We can transform these expressions.

O For instance
(A9 = (ag1 — agz(an) tan) ™!

(

= (a11((a11) " a12 — (a21) "t az))
(
(

(a21)_1 a11(a21(a11)_1 a2 — a22))_1

= a11(a21(a11)_1 a2 — a22))_1 a1

3See also page 4 in paper [16].



4@

Relation of Row-Column Determinants with Quasideterminants ... 319

It follows immediately that (A~")o1 = 0. In the same manner we can find that (A~1)15 =

0 ]. )

O

From the Example 5.6 we see that we cannot always use Equation (5.6) to find elements
of the inverse matrix and we need more transformations to solve this problem. From the
theorem 4.6.3 in the paper [9], it follows that if

ai;p ... Qip
rank | ... ... ... | <n-—-2

Apl ... Qpp

then |A|;; for all ¢, j = 1, n is not defined. From this, it follows that althoigh
minant is a powerful tool, use of a determinant is a major advantage.
Theorem 5.7. Let a matrix A have an inverse. Then for any matri “ equation

*

\\ (5.17)
follows from the equation Q

BA =CA (5.18)
Proof. Equation (5.17) follows from (5. y both parts of (5.18) over A1,
O

Theorem 5.8. The solution of a no lar system of linear equations

< | A:E =b (5.19)
is determined uniquely @ presented in either form*

(5.20)

Q T = H|A| b (5.21)
both sides of (5.19) from left by A~! we get (5.20). Using the Defini-
tion 5.4, weget (5.21). Since the Theorem 5.7, the solution is unique. O

Relation of Row-Column Determinants
with Quasideterminants

Theorem 6.1. If A € M(n,H) is an invertible matrix, then, for arbitrary p,q = 1,n, we
have the following representation of the pq-quasideterminant

Al ddetA - cdet,(A*A) , (a%))
P n(edety(A*A) 4 (a%,))

6.1)

“See similar statement in the theorem 1.6.1 in the paper [17] on pagen 19.
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_ ddetA -rdet,(AA"), (a;)

RS n(rdet,(AA*),. (aq.)) ©.2)

Proof. Let A~! = (b;;) to A € M(n, H). Equation (5.12) reveals the relationship between
a quasideterminant | A |, , of A € M(n,H) and elements of the inverse matrix A~! =
(bi;), namely

| A [pg= b(;pl
for all p,q = 1,n. At the same time, the theory of row and column determinants (the
theorem 4.20) gives us representation of the inverse matrix through its left (4.6) and right
(4.7) double cofactors. Thus, accordingly, we obtain

— * * -1
(A= bl = Ly, \ _ [cdety(AA) (A7) @
PO Rar T\ ddetA ddetA o Q
Ry, >—1 B (rdet,,(AA*),,, (A% \

Al,,=b1t=
[ A lpa= by (ddetA ddetA

Since ddetA # 0 € IF, then 3(ddet A)~! € F. It follows th

6.4)

(6.5)

1\ rdet,(AA*),. (Aj]‘.)
 1(rdet,(AA¥), (A%)) ©6)

Substituting (6.5) into (6.3), a .O)Lngo (6.4), we accordingly obtain (6.1) and (6.2).
We proved the theore O

Equation (6.1)
M (n, H) for alf
matrix A*A
matri

explicit representation of a quasideterminant | A |, , of A €
y the column determinant of its corresponding left Hermitian
oes by the row determinant of its corresponding right Hermitian

Exa € 6.2. Consider a matrix
@ A
& According to (5.13)

ail  ai2
a1 a2

a1 — ajz(a La aia —aqp(az) "t a
|A| :< 11 12( 22)_1 21 12 11( 21)_1 22) (6.7)

a1 — age(ai2) ™" air aze —agi(ain) " a2

Our goal is to find this quasideterminant using the Theorem 6.1. It is evident that

A* — (a_n a_21> AFA — (n(an) +n(ag1) a_na12+a_21a22> _

a2 G Gi2a11 + Gz2a21 n(aiz) + n(age)
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Calculate the necessary determinants

ddetA = rdet;(A*A)
= (n(a11) + n(az1)) - (n(ar2) +n(asz))
—(@11a12 + @zraz2) - (@12011 + Gzaz1)
= n(ai1)n(a12) + n(a11)n(aze) + n(ag1)n(aiz) + n(azi)n(az)
—G11012012011 — 011612022021 — 021022012011 — (21022022021
=n(ai1)n(a2) + n(azi)n(ai2) — (@G11612G22021 + ar1a12a022021)
= n(ai1)n(a) + n(ag)n(ai2) — t(@rrai2a2a21)

a1 G11a12 + ag1a99
cdet; (A*A — cdet, (22 d11d2 )
e 1( ) ( ) et <a22 (a12) +n(a22)
= n(a12)a21 + n(age)a21 — G11a12a22 — a%az
= n(a12)az1 — a11a12022.
Then
cdet1(A*A) j(a%) = n(aiz)az — QQZWE%

n(cdetl(A*A),l(aB)) = cdetl(A*A),l(aB) . cdetl(A
= (n(a12)a21 — azo@12a11
= n2(a12)n(a21) — D(CL12

1— a11012022)

—n(a12)a220120 4R 11011012022
= n(a12)(n(a 11a12a22021) + n(az1)n(ai2))
= n(ajz)ddet A

Following (6.1), we obtain

|Alo1 = A* Cde'ﬂl(A*A) 1(a%)
d t A* *

CL12 dd tAC © 1 ( )

- odet (AA) 1 @%) ©8)
< l a12
a12) (n(a12)az1 — azdiza)
= a21 — aga(a12) ta.

ast expression in (6.8) coincides with the expression | A2 in (6.7). O

7 . Conclusion

In the chapter we consider two approaches to define a noncommutative determinant,
row-column determinants and quasideterminants. These approaches of studying of a matrix
with entryes from non commutative division ring have their own field of applications.

The theory of the row and column determinants as an extension of the classical defi-
nition of determinant has been elaborated for matrices over a quaternion division algebra.
It has applications in the theories of matrix equations and of generalized inverse matrices

o‘"
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over the quaternion skew field. Now it is in development for matrices over a split quaternion

algebra. In the chapter we have extended the concepts of an immanant, a permanent and a

determinant to a split quaternion algebra and have established their basic properties.
Quasideterminants of Gelfand-Retax are rational matrix functions that requires the in-

vertibility of certain submatrices. Now they are widely used. Though we can use quaside-

terminant in any division ring,’ row-column determinant is more attractive to find solution

of system of linear equations when division ring has conjugation. O PY
In the chapter we have derived relations of row-column determinants with quasideter-

minants of a matrix over a quaternion division algebra. The use of equations (6.1) and (6.2) Q

allows us direct calculation of quasideterminants. It already gives significance in establish- \

ing these relations.
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