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PREFACE

This book focuses on the theory and applications of quaternions. Chapter
One collects some old problems on lattice orders and directed partial orders on
complex numbers and quaternions, and summarizes recent development in
answering those questions. Chapter Two discusses spin 1 particles with
anomalous magnetic moments in the external uniform electric field. Chapter
Three examines techniques of projective operators used to construct solutions
for a spin 1 particle with anomalous magnetic moment in the external uniform
magnetic field. Chapter Four analyzes the implementation of a cheap Micro
AHRS (Attitude and Heading Reference System) using low-cost inertial
sensors. Chapter Five reviews the basic concepts of quaternion and reduced
biquaternions algebra. It introduces the 2D Hermite-Gaussian functions (2D-
HGF) as the eigenfunction of discrete quaternion Fourier transform (DQFT)
and discrete reduced biquaternion Fourier transform (DRBQFT), and the
eigenvalues of two dimensional Hermite-Gaussian functions for three types of
DQFT and two types of DRBQFT. Chapter Six investigates a leader-follower
formation control problem of quadrotors. Chapter Seven considers
determinantal representations the Drazin and weighted Drazin inverses over
the quaternion skew field.

Chapter 1 collects some old problems on lattice orders and directed partial
orders on complex numbers and quaternions, and summarizes recent
development in answering those questions. Within the matrix 10-dimensional
Duffin-Kemmer-Petiau formalism applied to the Shamaly-Capri field, Chapter
2 studies the behavior of a vector particle with anomalous magnetic moment in
the presence of an external uniform electric field. The separation of variables
in the wave equation is performed by using projective operator techniques and
the theory of DKP-algebras. The whole wave function is decomposed into the
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viii Sandra Griffin

sum of three components ¥, ¥, , ¥, . Itis enough to solve the equation for

the main component @, the two remaining ones being uniquely determined

by it. Consequently, the problem reduces to three independent differential
equations for three functions, which are of the type of one-dimensional Klein-
Fock-Gordon equation in the presence of a uniform electric field modified by
the non-vanishing anomalous magnetic moment of the particle. The solutions
are constructed in terms of confluent hypergeometric functions. For assigning
physical sense for these solutions, one must impose special restrictions on a
certain parameter related to the anomalous moment of the particle. The neutral
spin 1 particle is considered as well. In this case, the main manifestation of the
anomalous magnetic moment consists in the modification of the ordinary plane
wave solution along the electric field direction. Again, one must impose
special restrictions on a parameter related to the anomalous moment of the
particle.

Chapter 2 - Within the matrix 10-dimensional Duffin-Kemmer-Petiau
formalism applied to the Shamaly-Capri field, Chapter 3 studies the behavior
of a vector particle with anomalous magnetic moment in presence of an
external uniform magnetic field. The separation of variables in the wave
equation is performed by using projective operator techniques and the theory
of DKP-algebras. The whole wave function is decomposed into the sum of
three components $\Psi_0, \Psi_{+}, \Psi_{+}$. It is enough to solve the
equation for the main component $\Phi_0$, the two remaining ones being
uniquely determined by it. Consequently, the problem reduces to three
independent differential equations for three functions, which are of the type of
one-dimensional Klein--Fock--Gordon equation in the presence of a uniform
electric field modified by the non-vanishing anomalous magnetic moment of
the particle. The solutions are constructed in terms of confluent
hypergeometric functions. For assigning physical sense for these solutions,
one must impose special restrictions on a certain parameter related to the
anomalous moment of the particle. The neutral spin 1 particle is considered as
well. In this case, the main manifestation of the anomalous magnetic moment
consists in the modification of the ordinary plane wave solution along the
electric field direction. Again, one must impose special restrictions on a
parameter related to the anomalous moment of the particle.

Chapter 3 - The separation of variables in the wave equation is performed
using projective operator techniques and the theory of DKP-algebras. The
problem is reduced to a system of 2-nd order differential equations for three
independent functions, which is solved in terms of confluent hypergeometric
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functions. Three series of energy levels are found, of which two substantially
differ from those for spin 1 particles without anomalous magnetic moment.
For assigning to them physical sense for all the values of the main quantum
number n=0,12, ..., one must impose special restrictions on a parameter

related to the anomalous moment. Otherwise, only some part of the energy
levels corresponds to bound states. The neutral spin 1 particle is considered as
well. In this case no bound states exist in the system, and the main qualitative
manifestation of the anomalous magnetic moment consists in the occurrence of
a space scaling of the arguments of the wave functions, compared to a particle
without such a moment. Traditionally, the automotive industry has been the
largest employer of robots, but their control is inline and programmed to
follow planning trajectories. As shown in Chapter 4, in this case, in the
department motor’s test of Volkswagen Mexico a semi-autonomous robot is
developed. To date, some critical technical problems must be solved in a
number of areas, including in dynamics control. Generally, the attitude
estimation and the measurement of the angular velocity are a requirements for
the attitude control. As a result, the computational cost and the complexity of
the control loop is relatively high.

Chapter 4 deals with the implementation of a cheap Micro AHRS
(Attitude and Heading Reference System) using low-cost inertial sensors. In
Chapter 4, the technique proposed is designed with attitude estimation and the
prediction movement via the kinematic of a 4GDL robot. With this approach,
only the measurements of at least two non-collinear directional sensors are
needed. Since the control laws are highly simple and a model-based observer
for angular velocity reconstruction is not needed, the proposed new strategy is
very suitable for embedded implementations. The global convergence of the
estimation and prediction techniques is proved. Simulation with some
robustness tests is performed.

Chapter 5 - The quaternions, reduced biquaternions (RBs) and their
respective Fourier transformations, i.e., discrete quaternion Fourier transform
(DQFT) and discrete reduced biquaternion Fourier transform (DRBQFT), are
very useful for multi-dimensional signal processing and analysis. In Chapter 5,
the basic concepts of quaternion and RB algebra are reviewed, and the author
introduce the two dimensional Hermite-Gaussian functions (2D-HGF) as the
eigenfunction of DQFT/DRBQFT, and the eigenvalues of 2D-HGF for three
types of DQFT and two types of DRBQFT. After that, the relation between
2D-HGF and Gauss-Laguerre circular harmonic function (GLCHF) is given.
From the aforementioned relation and some derivations, the GLCHF can be
proved as the eigenfunction of DQFT/DRBQFT and its eigenvalues are

Complimentary Contributor Copy



X Sandra Griffin

summarized. These GLCHFs can be used as the basis to perform color image
expansion. The expansion coefficients can be used to reconstruct the original
color image and as a rotation invariant feature. The GLCHFs can also be
applied to color matching applications.

Chapter 6 - The unit quaternion system was invented in 1843 by William
Rowan Hamilton as an extension to the complex number to find an answer to
the question (how to multiply triplets?). Yet, quaternions are extensively used
to represent the attitude of a rigid body such as quadrotors, which is able to
alleviate the singularity problem caused by the Euler angles representation.
The singularity is in general a point at which a given mathematical object is
not defined and it outcome of the so called gimbal lock. The singularity is

occur when the pitch angles rotation is @ =290°. In Chapter 6, a leader-
follower formation control problem of quadrotors is investigated. The
quadrotor dynamic model is represented by unit quaternion with the
consideration of external disturbance. Three different control techniques are

proposed for both the leader and the follower robots. First, a nonlinear H_

design approach is derived by solving a Hamilton-Jacobi inequality following
from a result for general nonlinear affine systems. Second, integral
backstepping (IBS) controllers are also addressed for the leader-follower
formation control problem. Then, an iterative Linear Quadratic Regulator
(iLQR) is derived to solve the problem of leader-follower formation. The
simulation results from all types of controllers are compared and robustness

performance of the H_ controllers, fast convergence and small tracking errors

of iLQR controllers over the IBS controllers are demonstrated.

Chapter 7 - A generalized inverse of a given quaternion matrix (similarly,
as for complex matrices) exists for a larger class of matrices than the invertible
matrices. It has some of the properties of the usual inverse, and agrees with the
inverse when a given matrix happens to be invertible. There exist many
different generalized inverses. The authors consider determinantal
representations of the Drazin and weighted Drazin inverses over the
quaternion skew field. Due to the theory of column-row determinants recently
introduced by the author, the authors derive determinantal representations of
the Drazin inverse for both Hermitian and arbitrary matrices over the
quaternion skew field. Using obtained determinantal representations of the
Drazin inverse we get explicit representation formulas (analogs of Cramer's
rule) for the Drazin inverse solutions of the quaternionic matrix equations
AXB =D and, consequently, AX=D, XB=D in both cases when A and
B are Hermitian and arbitrary, where A, B can be noninvertible matrices of
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appropriate sizes. The author obtain determinantal representations of solutions
of the differential quaternionic matrix equations, X' +AX=B and

X'+ XA =B, where A is noninvertible as well. Also, the authors obtains

new determinantal representations of the W-weighted Drazin inverse over the
quaternion skew field. The author give determinantal representations of the W-
weighted Drazin inverse by using previously obtained determinantal
representations of the Drazin inverse, the Moore-Penrose inverse, and the limit
representations of the W-weighted Drazin inverse in some special case. Using
these determinantal representations of the W-weighted Drazin inverse, the
authors derive explicit formulas for determinantal representations of the W-
weighted Drazin inverse solutions of the quaternionic matrix equations

WAWX =D, XWAW =D, and WAW,XW,BW, =D.
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Chapter 1

DIRECTED PARTIAL ORDERS
ON QUATERNIONS - A BRIEF SUMMARY

Jingjing Ma*
Department of Mathematics and Statistics,
University of Houston Clear Lake, Houston, TX, US

Abstract

This paper collects some old problems on lattice orders and directed
partial orders on complex numbers and quaternions, and summarizes re-
cent development in answering those questions.

Keywords: directed partial order, directed algebra, lattice ordea)gebra,
complex number, quaternion

2010 AMS Subiject Classification:06F25

1. Introduction

We will introduce some definitions and terminologies in this section. The reader
is referred to [2, 3, 5] for more information on partially ordered rings and lattice-
ordered rings (#ings).

Let R be a partially ordered ring. The positive cone Bfis defined as
Rt = {r € R|r > 0}. The positive cone?™ is closed under the addition

*E-mailaddress: ma@uhcl.edu.
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2 Jingjing Ma

and multiplication ofR and satisfiesR™ N —R™ = {0}. Let P be a subset of

a ring S that is closed under the addition and multiplicationSo&nd satisfies

P n—P = {0}. Define the partial ordex by for anya,b € S, a < b if
b—a € P. ThenS is a partially ordered ring with respect to the partial order
We often use the positive cone to denote a partial order on a partially orderec
ring. A partial order is calledlirectedif each element is a difference of two
positive elements. A partially ordered ring is calletattice-ordered ring(¢-
ring) if the partial order is a lattice order. Clearly a lattice order is directed,
but the converse is not true. L&tbe a commutative totally ordered ring with
the identity andA be an algebra over. If A is a partially ordered ring and
T+At C AT, thenA is called a partially ordered algebra ov&r If the partial
order onA is directed, ther is called adirected algebra, and if the partial order
on A is a lattice order, thed is called dattice-ordered algebrd/-algebra).

Let D be a totally ordered integral domain, that i3,is a commutative
totally ordered ring with the identity and without nonzero zero divisors. For
z,y € D, x < y denotes thahx < y for all positive integers:. LetT be
a commutative totally ordered ring with the identity element 1. The complex
numbers ovef is defined as

Cr={a+bilabeT,i’>=—-1},
and the quaternions ovéris defined as
Hrp = {ag + a1i + azj + ask | ag,a1,a2,a3 € T,i* = j> = k? = —1}.
The multiplication ofH is given as follows,

(ap + a1i + agj + ask)(bo + bii + baj + bsk) =
(agbo — a1by — agby — asbs) + (apb1 + a1by + azbs — azbz)i +
(apba + agbo + asby — aibs)j + (agbs + asby + a1bs — agby)k.

The following questions have been left unanswered for some time now, how-
ever they have greatly motivated research activities in the area.

e Problem 1. (G. Birkhoff and R. Pierce, 1956)Can the field of complex
numbers be made into a lattice-ordered ring?

e Problem 2. (L. Fuchs, 1963Describe the directed orders of the fields of
complex numbers and quaternions.
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Directed Partial Orders on Quaternions - A Brief Summary 3

e Problem 3. (G. Birkhoff, 1967) In how many ways can the quaternions
be made into ai-ring? an/-algebra? a directed algebra?

We will summarize below recent developments in finding lattice orders and
directed partial orders on quaternion algebras. Since this activity is closely re-
lated to and motivated by the same research for complex numbers, results fc
complex numbers are also included.

2. Directed Partial Orders on Cp

In this section, we present directed partial order§'gnwheref' is a totally or-
dered field. We start with lattice orders first. Lattice-ordered ridggigs) were

first systematically studied by G. Birkhoff and R. Pierce in the paper “Lattice-
ordered Rings” published in 1956 [2]. Problem 1 was asked in the paper. De-
spite many efforts made over years, this problem remains unsolved.

In the same paper, the authors proved that the complex@etdnnot be
made into a lattice-ordered algebraalgebra) over the real fiel®. About 40
years later, motivated by the work on lattice orders of matrix algebras over to-
tally ordered fields, the present author further proved that for any totally orderec
subfield F' of R with the usual total ordet)/,,(Cr) cannot be made into af
algebra ovelf’ for anyn > 1 [6], whereM,,(Cr) is then x n matrix algebra
with entries fromC/.

More generally, we have following result.

Theorem 1. [8, Theorem 6] Let D be a totally ordered integral domain. Sup-
pose thatCp is an/-algebra overD. If a + bi > 0 in Cp, thena > 0 and
|b| < ain D.

A direct consequence of Theorem 1 is thaDifis an archimedean totally
ordered integral domain, theti, cannot be ari-algebra oveD.
A natural question to ask is what happens in the non-archimedean case.

Theorem 2. [8, Theorem 4] Let F' be a totally ordered field, archimedean or
non-archimedeanC'r» cannot be made into aftalgebra overF'.

Now, let's consider directed partial orders on the set of complex numbers to
make it into a directed algebra. Since it has been unsuccessful of finding lattice
orders on complex numbers, researchers have tried to find directed partial orde
on it. The first result states that there is no directed partial ordéfowhen F
is an archimedean totally ordered field.
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4 Jingjing Ma

Theorem 3. [10, Corollary 2.2] Cr cannot be made into a directed algebra
over an archimedean totally ordered fietd

In [14], Y. Yang showed that for some totally ordered fi€)d Co admits
directed partial orders to make it into a directed algebra with 0, and hence
i is an element with negative square, thatits= —1 < 0. Then in [13], N.
Schwartz and Y. Yang proved th@tcan be made into a directed algebra dRer
and in [12], W. Rump and Y. Yang constructed directed partial ordet& @,
where K could be any non-archimedean totally ordered field é&nd= —1.
Their method has usedultiplicative segmerihat is a convex additive subgroup
of F' containing identity element 1.

Motivated by the above work, in [9], L. Wu, Y. Zhang and the present author
have introduced a more general method to produce directed partial orders o
Cr. Take an additive semigroup C F* with 0,1 € S, and taker,y € F'*
with 0 < z,y < 1. Define the positive cong, ,(S) as follows.

Pyy(S)={a+bieCy|acFt —za<sb<yainFforallse S}

Then(Cp, P, ) is a partially ordered algebra overand it is a directed algebra
if there exists: € F'* such thats < z for all s € S [9, Theorem 2.2].

For a non-archimedean totally ordered fiéldtakeS = Z* andz = y = 1,
thenP, ;(Z") is a directed partial order ofip that makes”r into a directed
algebra overF’. We also observe tha?, ;(Z*) is the largest directed partial
order onC'r over a non-archimedean totally ordered field. Therefere(Z™)
is division closedn the sense that for any, b € Cp, if a,ab € P1 1(Z*), then
be PLl(ZJr).

We notice that the partial orders defined above have positive identity ele-
ment, that is,l € P, ,(S). This begs the question whether we can construct
directed partial orders ofi» such that 1 is not positive?

Let S be an additive semigroup df* containing 0, 1. Suppose that there
existsw € F1 such thats < w for all s € S. Define

P(S)s = {a+bila>0,b>0inF,sb<a,Vse StU{0},
P(S)« = {a—bila>0,b>0inF,sb<a,Vse StU{0}.

ThusP(S)< is the conjugate oP(5)-.
Theorem 4. P(S)~ and P(S). are directed partial order orC'r with 1 0.
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Directed Partial Orders on Quaternions - A Brief Summary 5

Proof. Let’s just consideP(S)~. We leave it to the reader to check tHatS) -
is a partial order oiC'x. Takew € F* such thats < w for all s € S. For any
a-+bieCp,

l=14w+i)— (w+i)and(1l+w+1), (w+1i) € P(S)s,

so 1is not positive. We also have= (w+2i) — (w+1), and(w+2i), (w+1i) €
P(S)>. ThusP(95)- is a directed partial order.
The relation betweetr; ; (S) andP(S)~ is given as follows.

P(S)s = {a+bi € Py|b>0}uU{0},

and
P(S)>+F+:{a+bi€P171‘bZO}.

The research in this direction continues. As a mater of fact, all directed
partial orders with. > 0 on Cr over a non-archidemean totally ordered fiéld
have been described in [10] by using the similar positive coné g&S).

3. Directed Partial Orders on Hr

In this section, we present results on directed partial order8 pn First we
consider lattice orders. In 1962, McHaffy showed that the division algebra of
real quaternions cannot be é&ralgebra oveiR [11]; and much later in 2004,

it was shown thai\/,,(Hr) cannot be arf-algebra over a archimedean totally
ordered fieldF', for anyn x n matrix algebra with entries frof{ [4]. In fact,

the following more general result is true.

Theorem 5. [8, T'heorem 6] Suppose thab is a totally ordered integral do-
main andH p, is a partially ordered algebra oveDb. If a + bi +c¢j + dk > 0
in Hp, thena > 0 and |b| < a,|c| < a,|d| < ain D. In particular, If D is
archimedean, thei{ , cannot be arf-algebra overD.

How about Hr over a non-archimedean totally ordered fidl@ It was
proved that for any totally ordered field, Hr cannot be made into &hralgebra
over Fwith 1 > 0 [8, Theorem 7]. Actually, now we can prove thdj- cannot
be an¢-algebra over any totally ordered field
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6 Jingjing Ma

Theorem 6. For a totally ordered fieldF’, Hr cannot be arf-algebra overF'.

Proof. Suppose thal - is an/-algebra overr' and we derive a contradiction.
Then we know that # 0. By [5, Corollary 1.3],Hr is the finite direct sum of
convex totally ordered subspace B over F'. Since Hy cannot be a totally
ordered algebra ovdr, there are at least two direct summands.

Let's assume first thatfp = T1 ® T», whereTy, T, are totally ordered
subspaces ovdr. Supposd = ¢; + g2, Whereg; € T;. Sincel £ 0, one of
q1, g2 must be positive. We may assume that> 0, and hence; < 0. Let
q1 = ag + a1i + azj + ask. Then

q% = 2a9q1 — (a%+a%+a%+a§) >0

= 2a9q1 — (a% + a% + a% + ag)(q1 +q2) >0

= (2a0 — af — ai — a3 — a3)q1 — (af +ai + a3 + a3)gz > 0

= (200 — a2 —a? — a3 —a3)q1 > (a2 + a3 + a3 +a3)ge > 0.
However, since-q; A g2 = 0, we must have3 + a2 + a3 + a3 = 0[5, Theorem
1.13], soag = a1 = as = az = 0. Thusq; = 0, a contradiction.

Next, we assumélp = 17 & Ts & T3, whereTy, T, T3 are convex totally

ordered subspaces ov@r Thenl = ¢; + ¢2 + q3, Whereg; € T;. Similarly one
of g1, g2, g3 must be positive. Lajs > 0 andg; = ag + a1i + asj + ask. Then

¢ = 2a0q1 — (a2 + a2 + a3 +d3) >0

2a0q1 — (ag + af + a3+ a3)(q1 + @2 + g3) > 0

(2a0 — a§ — ai — a3 — a3)q1 — (af + ai + a3 + a3)a

—(a +a? + a3+ a3)g3 > 0

= (200 —af —ai — a3 — a3)q — (af + af + a3 + a3)g
> (ag + af + a5 + a3)gs > 0.

4o

Then sincdqi| A g3 = |g2| A g3 = 0, we must have? + a2 + a3 + a3 = 0, so
ap = a1 = a2 = ag = 0 andq; = 0, a contradiction again.

Similar argument may be made to the case fliatis a direct sum of four
convex totally ordered subspaces o¥erThis completes the proof.

Theorem 6 answers the second question in Problem 3.

Now we consider directed partial orders éfr, whereF' is a totally or-
dered field. By Theorem 5/ cannot be a directed algebra ovérif F' is an
archimedean totally ordered field.
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Directed Partial Orders on Quaternions - A Brief Summary 7

Motivated from the results obtained by W. Rump, N. Schwartz, and Y. Yang
for complex numbers, we were able to make the real quaterfiidngo a di-
rected algebra ovék with a non-archemedean total order [6]. In fact, define the
positive coneP onH as follows.

P ={ap+ ari +azj+ask € H|ag > 0,|a1| <K ag, |az] < aop, |ag| < ap}

ThenP is a directed partial order dfi that makes it into a directed algebra over

R with RN P = R* [6, Theorem 1].
In [9], the authors proved a more general method to produce directed partia
orders onH g over a non-archimedean totally ordered fiéldTake an additive

semigroupS C F* with 0,1 € S, and taker € F with 0 < = < 1. Define the
positive coneP,(.S) as follows.

P.(S) ={ao + a1i + azj + ask € Hr | ap > 0, |a1| <5 zao, |az| Ks zao, |asz] s zao},

where|a;| <g xap means—zag < sa; < zag for all s € S. Similarly for
las| < s zag and|as| <g xag. ThenP, is a partial order o  to make it into
a partially ordered algebra ovét, and if there exists an elementc F* such
thats < z forall s € S, thenP, is a directed partial order anfdy is a directed
algebra [9, Theorem 3.2].

For instance, for a non-archimedean totally ordered fiéldakeS = Z*
andz = 1, thenP, is the positive coné introduced in the previous paragraph,
and P (Z™") is the largest directed partial order éh:.

Directed partial orders o in which1 ¥ 0 may be constructed similarly
to the positive cond’(S)~ and P(S). on Cr. However, the last question in
Problem 3 remains unsolved.

The directed partial orders constructed for complex numbers and quater
nions over non-archimedean totally ordered fields have been generalized t
complex numbers and quaternions over non-archimedean partially ordere
fields that contain a totally ordered subfield [7, Theorems 1 and 2].

Acknowledgment

The author thanks Professor Warren McGovern, Florida Atlantic University, for
kindly reading the manuscript and providing helpful feedback.

Complimentary Contributor Copy



8 Jingjing Ma

References

[1] G. Birkhoff, Lattice Theory, vol. 25, 3rd ed. Colloquium Publications
AMS, New York (1967).

[2] G. Birkhoff, R. S. Piercel attice-ordered rings, An. Acad. Brasil. C28
(1956), 41-69.

[3] L. Fuchs, Partially ordered algebraic system®over Publications, Inc.
(2011).

[4] J.Ma, Finite dimensional simple algebras that do not admit a lattice order,
Comm. Alg32(2004) 1615-1617.

[5] J. Ma, Lecture Notes On Algebraic Structure Of Lattice-Ordered Rings
World Scientific Publishing (2014).

[6] J. Ma, Directed partial orders on real quaternio@siaestiones Mathe-
maticae(2015), DOI: 10.2989/16073606.2015.1091044.

[7] J. Ma, Directed partial orders on complex number and real quaternions Il,
Positivity (2015), DOI: 10.1007/s11117-015-0388-7.

[8] J. Ma, Partial orders o’ = D + DiandH = D + Di+ Dj + Dk,
International Journal of Advanced Mathematical Scien@R015) 156-
160.

[9] J. Ma, L. Wu, Y. ZhangDirected partial orders on complex numbers and
quaternions over non-archimedean linearly ordered fields, Order (First
Online: 05 March 2016, doi:10.1007/s11083-016-9387-y).

[10] J. Ma, L. Wu, Y. ZhangDescribing directed partial orders of'(i) with
1 > 0, (preprint).

[11] R. McHaffey, A proof that the quaternions do not form a lattice-ordered
algebra, Proc. of Iragi Scientific Societies(1962) 70-71.

[12] W. Rump, Y. Yang, Non-archimedean directed field&) with o-subfield
andi? = 1, J. Algebra400(2014) 1-7.

Complimentary Contributor Copy



Directed Partial Orders on Quaternions - A Brief Summary 9

[13] N. Schwartz, Y. Yang, Fields with directed partial ordeksilgebra336
(2011) 342-348.

[14] Y. Yang, On the existence of directed rings and algebras with negative
squares,). Algebra295(2006) 452-457.

Complimentary Contributor Copy



Complimentary Contributor Copy



In: Quaternions: Theory and Applications ISBN: 978-1-53610-768-5
Editor: Sandra Griffin (© 2017 Nova Science Publishers, Inc.

Chapter 2

SPIN 1 PARTICLE WITH ANOMALOUS
MAGNETIC MOMENT IN THE EXTERNAL
UNIFORM ELECTRIC FIELD

E. M. Ovsiyuk'*, Ya. A. Voynova®', V. V. Kisel®*,
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Abstract

Within the matrix 10-dimensional Duffin-Kemmer-Petiau formalism
applied to the Shamaly-Capri field, we study the behavior of a vector
particle with anomalous magnetic moment in the presence of an external
uniform electric field. The separation of variables in the wave equation
is performed by using projective operator techniques and the theory of
DKP-algebras. The whole wave function is decomposed into the sum of
three components Wy, U, W . It is enough to solve the equation for the
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YE-mail address: voinyuschka@mail.ru.
+E-mail address: vasiliy-bspu @mail.ru.
$E-mail address: vladimir.balan@upb.ro.
YE-mail address: redkov@dragon.bas-net.by.
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12 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

main component ®(, the two remaining ones being uniquely determined
by it. Consequently, the problem reduces to three independent differential
equations for three functions, which are of the type of one-dimensional
Klein—Fock—Gordon equation in the presence of a uniform electric field
modified by the non-vanishing anomalous magnetic moment of the parti-
cle. The solutions are constructed in terms of confluent hypergeometric
functions. For assigning physical sense for these solutions, one must im-
pose special restrictions on a certain parameter related to the anomalous
moment of the particle. The neutral spin 1 particle is considered as well.
In this case, the main manifestation of the anomalous magnetic moment
consists in the modification of the ordinary plane wave solution along the
electric field direction. Again, one must impose special restrictions on a
parameter related to the anomalous moment of the particle.

Keywords : Duffin—-Kemmer—Petiau algebra, projective operators, spin 1
particle, anomalous magnetic moment, electric field, exact solutions

1. Intoduction

Commonly, we shall use only the simplest wave equations for fundamental par-
ticles of spin 0,1/2,1. Meanwhile, it is known that other more complicated
equations can be assigned to particles with such spins, which are based on
the application of extended sets of Lorentz group representations (see [1]-[16]).
Such generalized wave equations allow to describe more complicated objects,
which have — besides mass, spin, and electric charge — other electromagnetic
characteristics, like polarizability or anomalous magnetic moment. These addi-
tional characteristics manifest themselves explicitly in the presence of external
electromagnetic fields.

In particular, within this approach, Petras [3] proposed a 20-component the-
ory for spin 1/2 particle, which — after excluding 16 subsidiary components —
turns to be equivalent to the Dirac particle theory modified by the presence of
Pauli interaction term. In other words, this theory describes a spin 1/2 particle
with anomalous magnetic moment.

A similar equation was proposed by Shamaly—Capri [6, 7] for spin 1 par-
ticles (also see [16, 17]). In the following, we investigate and solve this wave
equation in the presence of the external uniform electric field.

The wave equation for spin 1 particle with anomalous magnetic moment
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[6, 7] may be formulated as
ie
<BMDM + M)\F[IW]PJ[IW] + M) v =0, (D)

where the 10-dimensional wave function and the DKP-matrices are used':

U= (Jff:y] ) s i) = BBy — BB

In tensor form, (1) rewrites as2:

DU, — DV, + MV, =0,
Dy () + 28 NF, Uy + MY, = 0.

By using DKP-matrices, we apply the method [20] of generalized Kronecker’s
symbols 3
B, = et 4 elvily - p— e

A,B _ A,B_C,D A.D
(e™?)ep = 6acoBp, e7e T opce™,

1
O], [po] = 5(5/“35'/0 — Oodup)

and the main relationships in the DKP algebra:
Buﬁuﬁp + Bpﬁuﬁu = 5ul/ﬁp + 5p1/6u ) [6)\7 Jpo’]]* = 5)\,060 - 5)\oﬁp .

We use the following representation for DKP-matrices

0000 00O OOO 000 O O0O0O10O0TO
0000 00-1 000 000 O O0OO000OTO
0000 010 O0O0O0 000 0O —-1000 0O
0000 00O -100 000 O O0O0OO0O0-10
61— 0000 00O OOO , 52: 00-1 0 0000 OO ,
0010 00O OOO 000 O O0O000OO
0—-10 0 000 O0O0O 100 0 0000 OO
000-1000 O0O0O 000 O O0O000OTO
0000 00O OOO 000 -1 0000 0O
0000 0O0OO OOO 000 O O0O000OTO
0000 0-1000 O 0000 000100
0000 1 0O00O0DO 0000 000010
0000 OOOO0OO0O 0000 000001
0000 OOO00O0-1 0000 0000O0O
53: 0100 O0O0O00O0DO , 54: 0000 0000O0O
—-1000 00 O000O 0000 0000O0O
0000 OO0OOO0OO0DO 0000 000000
0000 OO0OOO0O0DO 1000 000000
0000 OO0OOO0O0DO 0100 000000
000—-1000000O0 0010 000000

"Here P stands for a projective operator separating from ¥ its vector component ¥,,; D, =
O, —ieA,, abd A3 denotes an arbitrary real-valued number.

’In a Minkowski space, we use the metric with imaginary unit, since x4 = ict.

3The indexes A(B, C, D, ...) take the values 1, 2, 3, 4, [23], [31], [12], [14], [24], [34].
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14 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

The uniform electric field is provided by the relations
(AM) = (07 07 07 —iE.Tg), b= const,

Flw) = 0uAy — Oy Ay, Figg = —Fluz) = —iE.

The non-minimal interaction through the anomalous magnetic moment is given
by the term

e 2eE
iM)\g)\;F[MV]PJ[NV] - iw}\g)\; PJ[34] .
Correspondingly, the main equation (1) is written as

0 0 0 0
51@ +52@+53$ + s (@—QE.TS) +To PJpg+ M| ¥ =0, (2)

where I'g = %)\.

2. Algebraic Transformation of the Wave Equation

Let us introduce the matrix Y = iJj34) = (83084 — $433) , which satisfies the
minimal polynomial equation Y3 =Y < Y (Y — 1)(Y + 1) = 0, and allows
us to define the tree projective operators:

1 1
Py=1-Y?, Pp=gY(Y+1), P.=3Y(Y-1),

and solve the wave function in terms of the three components:

Vg=FRVvY, Vv, =PV, V_=PV U=UYy4+V_+4+T,.
Acting on (2) by the operator Fy, and taking into account the algebraic identities
Yip=012Y, Pobia= B2, PyPJpy=—iP(1— Y)Y =0,

we get
(101 + B202 + M) Vo + PyfB3 D3Y + (04 — eEx3) PoyfsV = 0. 3)

Let us consider the operator P33 (we shall further use the computation
rules within the DKP-algebra):

PoBs = (1 =Y?)B3 = (14283838401 — B33 — Bafs) B3 =
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= 83 + 20303843433 — B3 — BaBafB3 =
= 203303(83 — B36484) — (B3 — B3544) = B3 — B36454 .

Considering the identities
Bs(1 — Py) = B3Y? = B33[3503 + Bafs — 2035B331B4) =
= B3 + 306484 — 2838404 = B3 — B34Pu,

the previous can be written in the form

Pofs = B3(1 — Bo) = B3(Py + P-).
Similarly, one can obtain the identity

Pofa = Pa(1 — By) = fa(Py + P-).
Taking into account the relations (4)—(5), (3) reduces to the form

(5181 + G205 + M) WUy +

+ [53 O3 + 54(84 — eExg)] v, + [53 O3 + 54(84 — eExg)] v_=0.

Let us consider the operator

BsPs = P (V +¥?) =

= B li(0s0 — BaB) — 20505484 + Bfs + ).

For Bg’ = (3 and (38403 = 0, it follows

1
B3Py = 5(53 + 133384 — B35454) -

As well, for Bi’ = B4 and (40384 = 0, we infer

1
BaPy = 545[2'(5354 — Baf33) — 233830484 + 303 + Bafa] =

= %[—i@x@xﬁ?, — 28403038404 + Baf3P3 + Ba] -

Complimentary Contributor Copy
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16 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

Further, by using the identities

BaBaB3 = B3 — B3B4Bs, Baf3P3 = Bs — PB33304,

we get

BuPy = L[=i(Bs — sfalhs) — 2(0a — BfBs0u)Baba + (Ba — Bss0s) + ] =

— _%[53 — (30844 + 1330304] .

Hence, we obtain the algebraic relation
B3Py =ifsPy = (B3 —ifs)Py =0. (7N
By combining the relations
, 1 : 1 ,
BaPy = 505 — B3Bafa +iB3036a],  BsPr = 5 (05 + 030554 — B30454) ,

we easily derive

1
B3Py = 5(53 +i04) Py . (8)

As well, by combining (7)—(8), we get

BuPy = — 2 (B +iBa) Py
In the same manner, we get the following three identities
(Bs+iB)P- =0, G- = S(Ba—if)P-, PuP- = Z(Ba—if)P-.  (9)
We further turn back to (6), which can be written as
(6101 + 202 + M) Wo+

+(53 O3 + 54(34 — eExg)]P+\I’+ + (53 O3 + 54(34 — eExg)]P,\I’, =0.
With the help of above identities, (9) can be rewritten in the form*

(8101 + B202 + M) Yo+

“We take into account that Pi =P
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+%(53 +i84) [03 — (04 — eEx3)] ¥4 + %(53 —i84)[03 + (04 —eEx3)|¥_ =0

or
(8101 + Bads + M) Wo + L(B3 + iB4) (03 + iExs) — i04) U+
+3(Bs — i84) [(33 — eEx3) + i0,) U_ = 0.

Now, let us consider the relation (2)
0 0 0 0
— — — — —eEx3) —iyPY + M | ¥ =
[51(%1 +52ax2+ﬁ3ax3+54(ax4 eEx3) —iloPY + 0,
and act on it by the operator 1 — Py = P, + P_ ; this yields
d g .
51@ + 62@ - ZF()PY + M (\I’+ + \I’,) +

0 0
+(1 —P0)53$+(1—P0)54(@ —eEx3)¥ =0. (10)
By using the easy-to-check identity

1—Py=Y?= 3383 + 181 — 203538404,

we get

(1= Py)B3 = P35+ (B3 — B30434) — 20383(83 — #38484) = +B38404 -

Similarly, we derive

BsPo = P5(1 = Y?) = P3(1 — B30 — Bafa + 203036451) = +P36454 -

By combining the two last relations, we obtain the commutation rule
(1—-FRy)Bs =B

In the same manner, we derive the following three similar relations

Ba— B3B3Ps = (1 — Po)Bay  Ba— B3P38s = Bal, (1—Po)Bs= Balo,

which lead to the rewriting of (10) as

[Bisr + Bagls — iDoPY + M| (¥4 + T_) +
+538%3‘I’0+54(% —eBa3)Wo =0, (11
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By acting on (11) by the operator 5 L (1 +Y) and with the help of the easy to
check identities

1 1 1 1
SUFY)Pe=S(I+Y)Y(A+Y)=Y(1+Y) =P,
1 _ 1
we derive
0 .
51 +52 5 —iloPY + M | U, +
1 0 1 0
+§(1+Y)53$‘1’0+5(1+Y)54(w —eEx3)Vo =0, (12)

We need three auxiliary relations. From the known formula

BrJipo] = Jpa) Ox = 0po Bx = Or0Bp
it follows
B3Y =YPs =+ifs = YP3=p03Y —if,
BaY =Y Py =—ifs = Y[Pa=PsY +ifs.
Therefore, (12) can be written as
(5152 + Bagls — iLoPY + M| Wi+
+1(Bs + BsY —iB) 52 Vo + 2(Ba+ BaY +iB4) (52 — eEx3) ¥y =0,
From this, taking into account Y Py = 0, we obtain the more simple form
(8152 + Bogls — iDoPY + M| U+
+3(83 — iB4) 325 Vo + 5(Bs +iB3) (521 — eEa3) ¥y =0,

or
0
51 +52 1F0PY+M] Ui+ (53 i31) [ Vo + 1 (6904 —6E9€3>}‘If 0=0.
Now, let us take into account an identity

1 1
YP =Y Y(14Y) = 5(Y?+Y3 =P, = YU, =0, .
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Then the previous equation reads
. 1 8 0
ﬂ1 + ﬂz —ioP+ M \I’+ + §(ﬂ 1ﬂ4) —ieFrs + 16 Uo=0.

As well, by acting on (11) by the operator %(1 —Y), after similar calculations
we get the equation

(51 + 52 —iloP + M) (53 + if4) ( 9 +ieEx3 — %;) Ty =0.

3. The Separation of Variables
We start with the three equations
(6101 + (202 + M)W+
+750+1(05 + ieBxs) — iy Uy + J5B-[(05 — ieBas) +id4] V- =0,
(8101 + B202 — iLoP + M)V, + fﬁ (03 —ieEx3) +1i04] Vg =0,
(8101 + B202 + iLgP + M)V_ + Eﬁ+[(83 +ieEx3) —i04]¥o =0,

where

- %(63 vif), B =

‘We look for solutions of the form:

B+ (53 — i) .

%\

Uy = eP4T4 pIP1T1 pIP2T2 fO(«TB) ,
U, = 61'1041‘461'1011‘161'1021‘2f+ (xg) ,
N eip4£04eip1£f?1eip2£02f7 (xg) .
So, we have the system of three equations in the variable z3:
(ip1B1 + ipafa + M) Vo+
+%5+[(% +ieEx3) + pa) Uy + %ﬁ,[(% —ieFx3) —pg|¥_ =0,
(Z'plﬁl + ip9 By — Lo P + M)\I’+ + %ﬁ,[(% - z'eExg) —p4]\I’0 =0,

(ip1 By + ip2fo + Lo P + M)W_ + S50, [(75 +ieBas) + pa]¥o = 0.
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With the shortening notation

~

a= % <+%+ieEx3+p4> , b= % (—% +ieEx3+p4> ;
ilo=T,  p1f1+p2f2 = p;

the equations are written as

(ip+ M)Wy + Bra¥y — B_bU_ =0, (13)
(ip — TP+ M)V, —B_bly =0, (14)
(ip+TP+M)VU_+3,aVy=0. (15)

By acting (14) by the operator

M —-TP
M-T"
we infer
M-TP M-TP M-TP, ;
Y5 M-TP) |V, — —(3_b¥y=0.
(i S ar-re) ) we - S5 b,
With the help of the identities
M —-TP 1
M-TP M? — MTP — MTP) = M,
=T ¢ )= =T )=
it reads _
M —-TP M re .
( Zp+ ) B,b\I’():O
By using the notations
M-TP M-TP
7'/\:14 77:/
T P=4 o P-=0

the previous equation shortens to
(A+ MU, — 3 b0y =0.
Analogously, by acting on (15) by the operator

M +TP
M+T’
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we get

M +TP
M+T

M+TP M+TP
( REL + Bravy=0.

M+TP))0_
M Pt o M )) +

Taking into account the identities

%(M+FP) = Mi_r(M2+MFP+MFP) =M,;
we derive
(%iﬁ#— M) U_ + %6+&\I’0 =0.
With the notations
M+TP . M+TP ,
THZP =L, mﬁ+ =05,

the last equation reads
(C+ M)V_ + (3, 0% =0.

Let us consider the powers of A

1

A= ar—y!

iMp — iDL Pp)(iMp — il Pp) =

1

m[—]\ﬁp? + MTpPp + MTPp* —T2PpPp).

Because
B}L:Pﬁu+ﬁuP:PBM+BMP7B}LP:P6}MP6}L:B}LP7
PﬁuP = Pﬁup = Ovﬁuﬁup = Pﬁuﬁuvﬁuﬁup = Pﬁuﬁm

P+P=1,PP=PP=0,

we get
1

(M —T)?

Mp?

A? = :
M-T

(—M?p? + MTp?) = —
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We calculate A3:

M

Mp? (M —TP)
-

(M—-T) M-T

A’ = M —TP)(ip)p* = — (ip) ,
so0, the minimal polynomial of A (or the Cayley-Hamilton identity for A) has
the form

Mp?
M-T

Similar results are valid for the operator C":

A3+ A=0.

Mp?
3+ L _C=0.
+M+r

The Cayley-Hamilton identity for ¢p) has the form
ip[(ip)* + p*] = 0.
Thus, the complete set of equations in the variable x5 is of the form
(ip+ M) fo+ Brafs — B-bf- =0,
(A+ M) fy =5 bfy =0,
(C+M)f-+pLafo=0.
To proceed with these equations, we introduce the matrices® with the properties

(ip+ M) (ip+ M) = p* + M?,
(A+ M)(A+ M) =p* + M?,
(C+ M)(C+ M) =p*+ M?. (16)

In fact these formulas determine the inverse matrices up to numerical factors
(p?+ M?)~1. Then the system of radial equations can be rewritten alternatively

(ip+ M) (0 + M) fo + Bya(p* + M?) f — B-b(p* + M?)f- =0,
(P’ +M*)fy —(A+ M) bfo=0,
(P + M?)f- + (C+ M)B}afo =0. (17)

SWe take in the account that p? = p? + p2
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The first equation in (17), with the help of the other two ones, transforms
into an equation in the component f(r):

(ip + M) (p* + M?)? fo + Boa({A+ M)B bfo + f-b(C + M)Bamfo =0, (18)
while the two remaining ones do not change

(P* + M?) fr — (A+ M)BLbfo =0,
(P> + M?) -+ (C+ M)B,afo=0. (19)

In fact, the equations (19) mean that it suffices to solve (18) with respect to fy; the two
other components f; and f_ can be calculated by means of the equations (19).
To proceed further, we need to know the explicit form of the inverse operators (16).
To solve this task, we first establish the minimal polynomials for the relevant matrices.
Therefore, the needed inverse operators must be quadratic with respect to the rele-
vant matrices. They are given by the formulas:

(M +ip) = 37 [(p)> — M(ip) + (p* + M?)],

— 2+M2 M-T M-T
(A+M) =t [1 ~ oA At M(p2+M2*MF)A2} ’

_— 2 2
_ p M M4T M4T 2
(C + M) - M [1 - p2+M2+MFC + M(p2+M2+MF)C } :
Taking into account the explicit form of the inverse operators, we get

(p* + M?) fo+

b [69)? = M) + (07 + M2)] By %

U M-T
P2+ M2 — MU~ " M(p? + M? — MT)

A‘ﬂ 3 abfo+

e [69)? = M) + (07 + M2)] B

M+T M+T ~
1- C C?| B bafy=0.
X[ p?+ M? +MT M (p? + M? 4+ MT) }@ @fo
Now, by considering the formulas
M-TP Mp?
A= —ip, A*=—
M-1 P M-T’
_ M+4TP s Mp?
¢= Myr P ¢ = M+T’
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M +TP
M+T

g = M —-TP
B M-T
we transform the above equation into

5*1 51}: 5+1

(P + M*) fo+
1 . .

+3p [0)° = M(ip) + (0° + M*)] By x
<l M—-TP o (ip)? M —-TP
Pz Mr P Ty Mr—MT| M-T

1 .. .
+z () = M) + (0" + M?)] B- x
1 M+TP 5t (ip)? M+TP
P+ Mt P M2 MT| M+ T
After some manipulation, this becomes

B abfo+

By bafo=0.

1 1

2 2 ~7
M?) + ab
L M) b s e — iy M =T

x [(ip)? — M (ip) + (p* + M?)] B+ [(p* + M? — MT) — (M — TP)ip + (ip)?] (M — T P)B—+

ba ! ! X
M2(p? + M2+ MI') M +T

x [(ip)? — M(ip) + (p* + M?)] B [(p* + M? + MT) — (M —TP)ip + (ip)?]
(M+TP)B1}fo=0

or
1 1

X
M2(p2 + M2 - MT)M —T
x [(ip)? — M (ip) + (p* + M?)] B4 [(* + M? — MT) — ip(M —T'P) + (ip)?] (M — TP)B_+

{ (p> + M?) +ab

. 1 1
b
* aM2(p2+M2+MF)M+FX

x [(@)? = M(@ip) + (0° + M?)] B [(0* + M® + MT) — ip(M + T'P) + (i5)*] (M +TP)B1 } fo = 0.

Due to the identity
pB+p =pB-p =0,
this admits the simpler form:
{0? + M?) + ab s wrr X (0% + M2 = MD)(i5)? By — M(p® + M? — MD)ipBy +
+(p® + M?)(p® + M? — MT)By — (p* + M?)Byip(M — TP) + (p° + M?)B4 (ip)?] (M — TP)B_+
+Bamﬁ x x[(p? + M? + MT)(ip)?B_ — M(p® + M? + MT)ipf_+
+(p® + M?)(p® + M? + MT)B_ — (p® + M?)B_ip(M + T'P)+

+(p? + M?)B_(ip)%] (M +TP)B1 }fo =0
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Now we take into account the explicit form of fy, ip, and all the involved matrices:

0 00 0 0 —-p30ps O O
0 00 0 ps 0 00 ps O
0 00 0 0 0 00 0 ps
0 00 0 0 0 00 0 —pg
5 — 0 ps 0 0 0 0 00 0 O
D= —p3 00 0 0 0000 O
0000 0 0 0000 O
pa 00 0 0 0 000 O
0 p40 0 0 0 000 O
0 0Ops—ps O 0 00 0 O
The explicit form of [ is:
. . . 0-10+i0 0
. . . 1000 +i0
. . . 1000 0 =+i
1 .. . 1000 0 —1
ﬁi: 2mml01 0 O . . . . . .
-1 0 0 0
V2 0 00 0 .
+i 0 0 0 .
0 4+i0 0 .
0 0 +i-1.
The explicit form of f[34) and T2 is:
00 0 O 00 0 O
00 0 O
66 9% 00 -1 0
00-10 00 0 —1
= 0000 10 Y =i -2 = 1000 00
T34 000-100 |’ RIETE 0 -100 00|’
0 00 0 OO 0O 00O OO
.. 010 00O 0O 00-100
.—100 0 00 0O 000 —10
.. 000 0OO0 0O 000 OO
f1
0900 a I
000011 Jo e
0000 . ..... f[4] 0
2 _ _ 23 _ 0
1-Y"= 000000 f,f= [ oy |, Fo=] o
001000 fraz] friz)
000000 faa 0
000000 0
00000 1 frea) fis4]
f34)
Then we obtain
f1 (M—T)f1
J2 (M=) fs
(2 2) 8 éi) (2 2)(2 2 ) §
p +M 0 + p°+ M*)(p*+ M — MT —
fraz) M?2(M —T)(p? + M2 — MT) 9
0 0
0 0
fl34) M f34]

p2(M—T")(p2f1—p1f2)
—p1(M—T)(p2f1—p1f2)

[=l=lolelole]

—iM(p? + M? — MT) — (p? + M? — MT)
(M*F)(P%flfplfz)

0
0

[=l=lolelelelelo)]
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P1f(34] p1(M—=T)(p1f1+p2f2)
P1f[34] Pz(M*F)(zg)1f1+szz)
0
0 0
+(p® + M*)M (M —T) 0 ~ (% + M?) 0 n
0 0
0 20
—(p1f1+p2f2) Mp~ fi34)
(M+T) f1
(M+T) f2
. 0
+ ba W+ MG MMy | 8 |-
M2(M +T)(p? + M2 + MT) o
0

0
M fi34)

0 p2(M+T)(p2 f1—p1f2)
8 *Pl(MJrF)E)szl*Plfz)
0
0
—iM (p® + M? + MT) 9 — (p? + M? + MT) 9 +
(M+T)(p2.f1—p1f2) 0
0 0
0 0
0 0
P1f(34] p1(M+T)(p1f1+p2f2)
P1f(34) PZ(M+F)(1(7)1f1+P2f2)
0
0 0
+(p* + M?*)M(M +T) 0 - (P*+ M?) 0 =0.
9 0
0 J
—(p1f1+p2f2) Mp~f134)

from this there follow four equations for the constituents of fo:

ab

2 M2
W™+ MO+ Sz = <

x{(p* + M?)(p* + M? — MT) fi — pa(p* + M? — MT)(p2f1 — p1fo)+
ba

M?2(p? +M2+M1“><

x{(p* + M?)(p* + M?* + MT) f1 — po(p® + M* + MT)(p2f1 — p1f2)—

+Mp1(p* + M?) fiza) — (0® + M*)pr(prfr + pafo)} +

—Mpi(p® + M?) fiza) — p1(p®> + M?)(p1f1 + p2fo)} =0, (20)

ab y
M2(p? + M2 — MT
x{(p? + M*)(p* + M? — MT) fo + p1(p* + M? — MT)(pafi — p1fa)+
N ba y
M?2(p? 4+ M2+ MT

(P* + M) fo +

+M(p* + M?)p2 fiza) — p2(p° + M?)(p1f1 + pafo)}
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x{(p* + M?)(p* + M? + MT) fo + p1 (p* + M? + MT)(paf1 — p1fa)—

—Mpa(p® + M?) fiza) — pa(p® + M?)(p1f1 + p2f2)} =0, (21)

(0 + M) foo) + T ilpafs — pio)} + ol ilpafi —pi )} =0, 22)

ab

MM —T)(p2 £ M2 MP){(p2+M2 — MT) fizq) — (M =T)(p1f1+p2f2)) — P flaa }+

fi3a1 +

ba

+M(M+F)(p2 + M? + MT)

{(p® + M? + MT) fizq) + (M +T)(p1.f1 + p2.f2)) — p* fiaa)} = 0.

(23)

From (22) we derive

(p* + M?) fr19) — M(ab +ba)(p2fi —p1f2) =0,
and from (23) it follows

AI; B,«
“ {Mf[34]—(p1f1+p2f2)}+M “

m{Mf[34]+(p1f1+p2f2)} =0.

et 3 e =

Then, from (20)—(21), we get
[EQI] (p2 + MZ)fl + m X

x{(p? + M?)(p? + M? — MD) f1 — pa(p? + M? — MTI)(p2f1 — p1fo)+
+Mp1(p® + M?) fizq) — (p* + M?)p1(p1f1 + p2f2) }+

+M%ﬂf% x {(p* + M?)(p*® + M? + MT) f1 — pa(p* + M? + MT)(p2f1 — p1f2)—

—Mp1(p? + M?) fiza) — p1(P* + M?)(p1f1 + p2f2)} =0,

[EQ.II] (p% + M2)fy + m x
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x{(p? + M?)(p*> + M2 — MT) f2 + p1(p?> + M2 — MT)(p2f1 — p1f2)+
+M (p? + M?)p2 f(za) — p2(p* + M?)(p1f1 + p2f2)} +

+ x {(p?+ M2)(p? + M2 + MT) fo + p1(p? + M2 + MT)(p2f1 — p1.f2)—

ba
MZ(p2+ M2+ MT
—Mpa(p? + M?) fiza) — p2(p® + M?)(p1f1 + p2f2)} =0.

By combining these equations as follows:

p1-[EQII +po - [EQI],  p2-[EQI] —py - [EQII],

we derive )
ab "
M2(p? + M2 — MT)
x{(p* + M? — MT)(pLf1 + p2fa) + Mp” fiza) — p*(prf1 + pafo) }+
N ba y
M?(p?+ M? + MT)
x{(p* + M? + MT)(pLf1 + p2fa) — Mp* fiza) — p*(prfr + p2fa)} = 0,

(prf1 +p2fo) +

(p° + M?)(p2f1 — p1f2)+

+—{(p* + M?)(p2.f1 — p1f2) — P*(P2f1 — p1f2) }+

+—{(®* + M?)(p2fi — p1f2) — P*(p2fr —p1f2)} =0.

After elementary manipulations, they read

(prf1 + pafo) +

ab
+M(p2 T 16\22 ~MT) {(M =T)(p1fr + p2f2) + P* fizq} +
+ i {(M +T)(prfr + p2f2) =P’ fiag} =0, (24

M (p? + M? + MT)

(p? + M) (pofi — p1f2) + (@b + ba)(pofy — prf2) = 0. (25)

Let us write down here the remaining two equations (see (22)—(23)) as well:

(07 + M?)fuz) — 7(@b+ ba) (pofi = p1f2) = 0. 26)
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ab
(p? + M? — MT)
ba

+M(p2 + M? 4+ MT)

fisg + 37 {Mfizq) — (p1fr + p2fo)} +

{M fizq + (p1fr +p2f2)} =0 27
From (25)- 26), we easily derive
[(ab + ba) + (p* + M?)](p2f1 — prf2) =0,
frg = ap(p2f1 — pif2) -

Thus, we need to investigate only the two remaining equations. We introduce
the shortening notation:

F = fi34, G =pifi +pafa,
and then the equations get the form

ab ba

F+arrar M - O+ i ram MF+6) =0
(28)
G+ ab (M —T)G +p*F] +
M(p% + M2 — MT) P
BA
+ - (M +T)G — p*F] = 0. (29)

M (p? + M? + MT)
Let us transform the first equation (28) to the form

24+ M?2+ MTD)ab(MF — Q)+

1
F+ simr=smperarem < (P
+(p2 4+ M? = MT)ba (MF + @)} =0,

which after elementary manipulation yields

F+

1
M[(p>+M2)2—M2172] X
) {M(p? + M?) @b F + M2T ab F — (p? + M?)abG — MT abG+
+M(p? + M2)ba MF — M?T'ba F + (p* + M?) ba G — MT ba G} = 0,
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or,

[EQIl  F+ yempy—er X AM (0 + M?) (ab + ba) F + M°T (ab — ba) F—

—MT (ab+ba)G — (p* + M?) (ab—ba) G} = 0.
We further rewrite (29) as

G+

J\/I[(p2+1v121>271v12r2>{(1’2 + M2 4+ MD)(M —T)6bG + p*(p? + M2 + MT) ab F+
+(M +T)(p? + M2 — MT) ba G — p?(p> + M? — MT)ba F} =0,

or,

1
G+ sz
x{ (p* + M?)(M —T)abG + (M*T — MT?)abG + p?(p* + M?) ab F + p* MT ab F+
+(M +T)(p* + M?)ba G — (M?T + MT?)ba G — p*(p* + M2)ba F + p?MT ba F} =0,

so we infer

[EQI] G+ M[(p2+1w§>H/IZF2> x { M(p2? + M?)(ab + ba) G — I'(p® + M?2)(ab — ba)G—
—MT?2(ab + ba) G + TM2(ab — ba)G + MTp? (ab + ba) F + p(p® + M?2) (ab — ba) F} =0,
Let us combine the equations [EQ.I] and [EQ.II] as follows:
—Tp?-[EQI]+(p*+M?)-[EQII], (p?>+M?—-T?).[EQI+TI--[EQ.II] = ..

this leads to
2
(@b + ba) + p? + M2]G — Tp*F + pM(&b —ba)F =0,

[(ab+ ba) + p? + M?F + TG — %(AB— ba)G —I2F + %(aé— ba)F =0.

Taking into account the explicit form of the operators a, b, and by considering

G 1<++d+'E +') b 1( 4y ieE +')
a=— — +ieEx 1€ |, = —|———+1iekx 1€ |,
V2 \ das ’ V2 \ dr3 ’

we get o
(ab — ba) = ieE.
Then the last equations rewrite in the simpler form
[(ab + ba) + p* + MG = p*(T — B F |
[(ab+ ba) + p* + M?|F = — (T — ©B) G + T (I' - £E) F.
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Let us introduce the notation iel = Ej; then the system is written as

This sub-system is solved by diagonalizing the mixing matrix. To this aim, let
us introduce the new functions

P=G-MF, ®=G—\F,

where

T — /T2 — 4p2

2= 2

N I+ /I'2 — 4p? N
1=—F,
2

So we get two independent equations:
[(aé+6a)+p2+M2] —XJ =0, N=x (-
[(aé+6a)+p2+M2] —XQ} Dy=0, Ny=X (I
For the second order operator, we have the explicit for, e.g., x3 = 2:

d2

——— — €%’F%22 — 2¢Eez — €°.
dz2

(ab + ba) =
Thus, we get the equation®:

d2

12 + (2E%2% + 2eFez + ¢*) — p°p* — M* + M| ®12(2) =0,

where p? = p® — M? + X} 5.

This task coincides with that which arises for the scalar Klein—-Fock—Gordon
particle in external uniform electric field modified by an anomalous magnetic
moment.

®We consider both variants.

Complimentary Contributor Copy



32 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

4. Restrictions on the Values of Anomalous Magnetic
Moment

On physical grounds, the above parameter ;> must be positive, for both cases

e\ T' £ /T2 — 4p?
=yt (r YLV,

We take into account that I' = i['’:

E\ To + /T2 + 4p2
/~L2:M2+p2+<Fo—e ) 0 20+ P~ o.

M

Clearly, the region for I'y, given by®:

el

Lo—=7 >0 (cE>0),

has no physical sense, because it does not contain the vicinity of the point I'g =
0. So, in the following we assume that

FE
I'o—y <0, yzeﬁ>0.

Then, the main inequality takes the form

2(M? + p?)
S ST+ /T2+4p2.
(y—Tp) ~ "oV

Let us study the variant I'y < 0, (—) — lower sign :

2(M? + p?)
S L STy — /T + 4p?,
(y—To) ~ O Vior®

which is valid without any additional restrictions.

We first address the variant I'y < 0, (4) — upper sign:

2(M? + p?)
ST+ /T2 4p2.
(y—To) 0

"In our considerations, I'g is real-valued
8For definiteness, we assume that eE > 0
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2(M? + p?)
ST TP py s /T2 4 4p2
(y —To) 0

which, after squaring, takes the form

This yields

4(M2 +p2)2
(y —To)?

2(M? + p?)

_2F7
"y —To)

—4p* >0,

or
4(M?* 4 p*)? —4ATo(M? + p*)(y — Tg) — 4p*(y —T)* > 0 .

It is convenient to use the variable x:
y—ITo=2>0,
which leads to
(M? +p*)? = (y — x)a(M? + p*) = p’a® > 0,
equivalent to
(M2 +p?)y | (M?+p?)°

2M? + M?
The roots of this quadratic equations are

( 2M2 ) i ( 2M2 ) /yQ _4:]\427

>0.

22— 2

T12 =

and the whole parabola lays above the horizontal axes only if the discriminant
is negative, and this yields

E
2 AM? <0 — BM<QM.

Thus, we get the essential restriction on the magnitude of the electric field I'g <
0.

We further address the variant I'y > 0, (—) — lower sign:

2(M? + p?)
=l > Ty— /T2 +4p?,
(y —To) 0

which is evidently valid.
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Let us now consider the variant 'y > 0, (+) — upper sign:

2(M? + p?)
Ty > /T2 +4p2.
(y—To) 0

After squaring this inequality, we obtain

4(M?* 4 p*)? —4ATg(M? + p*)(y — Tg) — 4p*(y —T)* > 0 .

Now, we can repeat the previous analysis. With the help of the variable y—I'g =
x, we get
(M? +p°)? = (y = 2)a(M? +p?) = p’2* > 0
or
(M2 +p)y | (M*+p?)°
2M? + M?

2 — 2z >0;

the corresponding roots are

( 572 )i( 5172 ) Vy? —4M?2.

T12 =

The whole parabola lays above the horizontal axis only if the discriminant is
negative, which yields

E
Y AM? <0 = eﬁ<2M.

Considering the previous assumption 0 < I'g, we derive 0 < I'g < %

Allin all, we conclude that 2 is positive, if the following double inequality

18 valid B
e

5. Solving the Differential Equation

We start with the equation

d2
<@+(6+6Ez)2—u2) ®(z)=0, u2=M2+p2—)\/172>0- (30)
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We remark that this equation, after its transforming to a new variable x is — from
mathematical point of view — very similar to that arising for the non-relativistic
quantum harmonic oscillator:

2 2
:6+6EZ, (%—,ﬂﬂeE)?x?)cb:o,(d—+E—kx2>f:o.
A

el dx?
Let us use in (30) a new variable 2

E 2 2
PR (etitbe 0= 1o er>0).
€

4eE’
Then we obtain an equation of the form

<d2 12 d 1 o

4 =1

2t 7@z 4+Z)(I)(Z):O’

which has two singular points. The point Z = 0 is regular, and the behavior of
the solutions in its neighborhood may be as follows

Z—0, ®2)=2z4, AE{O,%} .

The point Z = oo is an irregular singularity of rank 2. Indeed, in terms of the
variable y = Z~!, the above equation reads

d> 3/2d 1 10
—+—————+ = |P2=0.
(dy? R y3)
When y — 0, the corresponding asymptotic structure is given by
y_>07 (E:yCeD/y7 (PlzctycfleD/y_‘DyC72eD/y7
" = C(C—1)y 2PV —CDyC 3P/ —D(C—2)y 3PV D2y O 1Py
Then, the above equation gives

c(C-1) 20D-2D D?* 3C 3D 1 o
5 5 T A TSR o mA s
Yy vt 2yt 2y0 4yt oy

Y
We retain only the main terms proportional to 4> and 3 ~*, and require that
their coefficients vanish:
1 3
D2—Z:O, —2CD+2D—§D+Z'U:O,

Complimentary Contributor Copy



36 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

whence it follows

1 1
D1:+§, 01:Z+ia; D2=—§7 0221—”'
Thus, at infinity, two asymptotics are possible
Z*C1 6D1Z — Z*l/4*i0’e+Z/2

Z — 00, b =7 CelP? =
7-CepD2Z _ Z71/4~H'0'672/27

where’®

2 .
7 = Z'(€+:gz) =7, Zo >0, eiZ/2 —_ eizZO/27

7—1/4Fio _ (elnizo)*l/@io _ (eln zo+i7r/2)fl/4¢io '

We shall further construct a solution in the whole region of Z. We start with
the substitution
®(2)=22eP2 f(2).
This leads to
d 1 A(2A-1)

d? 1
Z—+(2A+=+4+2BZ)—+ (B - 2)Z
( d22+( o+ )— +( ) Z +

B
9AB+ = +i0) f(Z)=0.
az 1 2z +2+W>f()

We fix A € {0,1/2}, B = —1/2; then the equation becomes simpler

(zdd—;2+(2,4+1/2— Z)d% A+ 1/4—i0)) FZ) =0,
which coincides with the confluent hypergeometric equation with
a=A+1/4—io, c=2A+1/2, f(2) = 24 e %2 F(a,c; Z).
Without loss of generality, we may take the value A = 0:
A=0, a=1/4—ioc, c=+1/2, ®(2Z)=e22f(2).

Let us consider two definite independent solutions of the confluent hyper-

geometric equation!®:

Y1(Z) = F(a,¢; Z) = e F(c—a,c;—7)
Yo(Z)=Z'F(la—c+1,2—¢;Z)= 2" ?F(1 —a,2 —c;— 7).

9We use the main branch of the logarithmic function.
1"Note the equivalent representations for each solution.
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These two lead to the corresponding ®’s:
D = e*Z/QF(a, ¢ Z) = e*Z/2F(c —a,c;—2);
Oy =e 4PV CFla—c+1,2—¢;Z)=2" PPl —a,2— ;7).

By taking into account the identities

1 Ry o 1 .
6_57 a—4 10, ca—4+w—a, c—c—2, 2 =—7,
3 3
a-ctl="—io=(1-a), (@-9=C-c =},

we conclude that the first solution ®1(Z) is given by a real-valued function,
whereas the second one, $o(Z), has the following property with respect to the
complex conjugation

Oy (2) = +[®1(2)]", Dy(Z) =i[Pa(2)]" .

This behavior of ®2(Z) can be presented as the property of real-valuedness, if
one uses another normalizing factor

= 1—14 1—14
Dy(7) = —— —
(4 =75 V2
For small values of Z, the solutions behave as follows

V(Z) =1, Ya(2) VT = Vil =[5 (e +eB);

P(2)~ 1, OZ)m~VZ=\iZy=/Z (c+eEz).

0z - (o) ~@@r. oy

For large values of Z = 12y, Zyg — 400, on can employ the known asymptotic
formulas

Fla,¢,Z) = (%(—2)“ + ) + (?EZ; eZ707¢ ¢ ) :

In this way, we derive'!

(-2) " = (—iZO)*1/4+w = (el“ Zw‘w/z)fl/“” — ¢~ (=1/4+i0)im/2 (=1/4+io)In Zo

’

""We use (again) the main branch of the logarithmic function
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. . —1/4—ioc LN .
Za—c — (iZO)71/4710 — (eln Z0+z7'r/2) / — €+(71/4710)z7‘r/2 6(71/4710) In Z ,

Ie) _ T(1/2) I'e) __TP(1/2)

I'(c—a) T(1/4+i0)’ I'(a) T(1/4—io)’

SO we get '
Yi(Z) = Fl(a, ¢, Z) = e%0/2x

SO TA2)  Cyjatiying2 (<1/avio) In Zo —iZo/2.,.
T(1/4 + io)

D(1/2)  {(C1jamioyin/2 (—1/4—io)InZo +iZ0 /2
m@ (& (& . (32)

From (32), it follows the asymptotic form for
I'(1/2) L s _ . iy
P, (7)) = (=1/4+i0)in/2 (—1/4+i0)InZo ,—iZ0/2
1(2) {F(1/4+z'0)6 ¢ e

D(1/2)  f(C1ja—ioyin/2 (—1/4—io)In Zo +iZ0 /2
T/ i0)" ‘ ‘ -3

As it should be, we notice the sum of the two conjugate terms.

In a similar manner, we study at infinity the function F'(a —c+ 1,2 — ¢; Z):

Fla—c+1,2—¢2) = (?g:g; (—z)~wte=1 4 ) + (%ezz‘kl + ) .

Taking into account identities

(—z)~otemt = (—izg)~3/4H00 = (eln Zw‘w/z)”/“” _ o~ (=3/dtio)in/2 ((=3/4+ic) InZo

za—1 _ (iZO)*3/4*” _ (eln Zo+iﬂ/2)73/47ia — H(=3/4—io)in/2 (=8/4—ic)In Zo 7

r2-c¢  T(3/2) re-c¢ _ T(3/2)

I'(l—a) T(3/4+i0)’ Ila—c+1) TI(3/4—io)’

we derive the asymptotic formula

Fla—c+1,2—¢ 2) = eiZ0/2 F(FS(/:il/fi)U) e~ (=3/4+io)in/2 o(=3/4+io)InZgo—iZo/2 4

+ F(g;i/i)y) e+ (=3/4—io)in/2 o(—3/4—ic)In Zg €+z‘Z0/2} )
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From this, for the function ®5(Z) we infer!?

9 (2) =VZZ'?F(a—c+1,2— ¢, Z) = ™4 x

U(3/2)  _(Cs3/atio)in/2 (—1/4+i0)InZo .—iZo)2
X{F(3/4+z'a)e e e +

L(3/2)  +(-s/amioyin/2 (~1/4—io)n 20 +iZo/2 | (34)
T(3/4— io)

This results agrees with the previously obtained formula (31).

We can construct linearly independent solutions which do not behave at
infinity as (quasi-)real superpositions of complex-valued functions. To this end,
we should employ another pair of linearly independent solutions

Y5(Z) =V¥(a,c Z), Y7(Z) = e?W(c—a,¢; 7).

The two pairs {Y5, Y7} and {Y7, Y2} relate to each other by the Kummer for-
mulas

I'(1 — I'(ec—1
Vo= L9y Tle Dy oy

I'(l1--¢) T'(e—1)
TF'la—c+1) I'(a) I'(l—a) Y

imc
— Ys .
! I'(c—a) © 2

For large Z, (| Z |— o0), the following asymptotic formula is valid

Y= W(a,¢;2) = Z7% = (i) /410 = (e Zotin/2) T/
Y7(Z) = e U(c —a,¢;—Z) = eZ(—iZp)? ¢ = €'%0(—iZy) ~/4710 = ¢i%o (eln ZU*”/Z)_IM_W .

These formulas — after passing to the functions ®(7) — take the form

&5 = e~ 2/2Y;, = ¢~i%0/2 (eln Zo+i7r/2)*1/4+i0

)

O; = e 22Y5(Z) = eti%0/? (eanOfiﬂ/Q)*l/ZL*io '

We see that these functions are conjugate to each other; only these ones enter
the superpositions (33) and (34).

2We recall that vVZ = e(1/2)(n Zotin/2)
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6. Spin 1 Particle with Vanishing Electric Ctge

Let us derive the corresponding result for the case of a neutral particle. Formally,
this can be obtained ny means of the following limiting procedure

2F 2elE

2F
e— 0, M)\—>oo, F:iﬁ)‘_’ MA’

where A is a dimensionless parameter; the new A has the electric charge dimen-
sion. We consider below only the main relations:

fuoy = a7 (2fi — prfa) (% +& —p® = M?) (p2fi — p1f2) = 0;
F = f34), G=p1fi +p2f2,

1 [(al}H}a) +p? + Mﬂ G = p*F,

N———

r-1 [(a6+éa)+p2+M2} F=-G+TF;
P =G-MF, P=G—-— X F,
M=+ VT2 —4p?), A =50 — VT2~ 4p%);
(% +e—p? - M+ F)\LQ) ®19(2) =0.
Let us introduce the notation
A= —p* —M*>0, A+TAo=p?,
where

r T r
Thiz = (0 £ VT2~ 4?) = 270 (iFO +4/-T2 74p2> = 770 (ro +,/I2 +4p2> )

The solutions will have the form of plane waves ®1 2(z) = e*%?3%, only if

1 /
pz:A—§F0<F0i Fg+4p2)>0.
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Let us study this inequality. It is convenient to consider separately the following
four subcases:

1. upper sign (+), I'o > 0;
2. lower sign (—), I'p > 0;
3. upper sign (+) T'y < 0;
4. lower sign (—) I'g < 0.

Consider variant 1:

Io>0, 2A>T, <F0+\/1%+4p2), 2A —T§ > Toy /T2 +4p?;

here we must impose the obvious restriction
2 <2A,
and we further derive

AA? —4AT2 + T3¢ > T3(T3 +4p®) = AZ - AT3 >T3p?

thatis T'Z < ﬁ;g. We can readily check the inequality:
A2
20 > —,
A + p?

and thus conclude by the restriction

1. 0<Ty< I'o>0. A= —p?—M?*>0.

A
A+

Now consider variant 2.

2. Ty>0, 2A>F0<F0—\/Fg+4p2);

evidently, this relationship is always valid.

Then, variant 3:

3. I'y <0, 2A > Ty <F0+\/Fg+4p2) ;

this relationship is always valid.
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Finally, we address variant 4:

4. To<0, 2A>Ty (Fo — /T2 +4p2> = (-To) ((*Fo) +4/T3 +4p2> ,

where by using the results for the case 1, we obtain

A2
< —— Ty <0.
0 A + p2 ) 0
By summing, we conclude that the parameter I'y must lay within the fol-
lowing bounds:

A
Iy < +—nv A= —p>—M*>0.
A + p?

Conclusion

Within the matrix 10-dimensional Duffin-Kemmer-Petiau formalism applied to
the Shamaly-Capri field, we study the behavior of a vector particle with anoma-
lous magnetic moment in the presence of an external uniform electric field. The
separation of variables in the wave equation is performed by using projective
operator techniques and the theory of DKP-algebras. The whole wave function
is decomposed into the sum of three components ¥g, W, W . It is enough to
solve the equation for the main component ®(, the two remaining ones being
uniquely determined by it. Consequently, the problem reduces to three inde-
pendent differential equations for three functions, which are of the type of one-
dimensional Klein—Fock—Gordon equation in the presence of a uniform electric
field modified by the non-vanishing anomalous magnetic moment of the parti-
cle. The solutions are constructed in terms of confluent hypergeometric func-
tions. For assigning physical sense for these solutions, one must impose special
restrictions on a certain parameter related to the anomalous moment of the par-
ticle. The neutral spin 1 particle is considered as well. In this case, the main
manifestation of the anomalous magnetic moment consists in the modification
of the ordinary plane wave solution along the electric field direction. Again,
one must impose special restrictions on a parameter related to the anomalous
moment of the particle.
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Within the matrix 10-dimensional Duffin—Kemmer-Petiau formalism
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particle with anomalous magnetic moment in presence of an external uni-
form magnetic field.

The separation of variables in the wave equation is performed us-
ing projective operator techniques and the theory of DKP-algebras. The
problem is reduced to a system of 2-nd order differential equations for
three independent functions, which is solved in terms of confluent hyper-
geometric functions. Three series of energy levels are found, of which
two substantially differ from those for spin 1 particles without anomalous
magnetic moment. For assigning to them physical sense for all the values
of the main quantum number n = 0, 1, 2, ..., one must impose special
restrictions on a parameter related to the anomalous moment. Otherwise,
only some part of the energy levels corresponds to bound states. The
neutral spin 1 particle is considered as well. In this case no bound states
exist in the system, and the main qualitative manifestation of the anoma-
lous magnetic moment consists in the occurrence of a space scaling of the
arguments of the wave functions, compared to a particle without such a
moment.

Keywords Duffin—Kemmer—Petiau algebra, projective operators, spin 1
particle, anomalous magnetic moment, magnetic field, exact solutions,
bound states

1. Introduction

Commonly, we shall use only the simplest wave equations for fundamental par-
ticles of spin 0,1/2,1. Meanwhile, it is known that other more complicated
equations can be proposed for particles with such spins, which are based on
the application of extended sets of Lorentz group representations (see [1]-[16]).
Such generalized wave equations allow to describe more complicated objects,
which have besides mass, spin, and electric charge, other electromagnetic char-
acteristics, like polarizability or anomalous magnetic moment. These additional
characteristics manifest themselves explicitly in presence of external electro-
magnetic fields.

In particular, within this approach Petras [3] proposed a 20-component the-
ory for spin 1/2 particle, which-after excluding 16 subsidiary components - turns
to be equivalent to the Dirac particle theory modified by presence of the Pauli
interaction term. In other words, this theory describes a spin 1/2 particle with
anomalous magnetic moment.
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A similar equation was proposed by Shamaly—Capri [6, 7] for spin 1 par-
ticles (also see [16, 17]). In the following, we investigate and solve this wave
equation in presence of the external uniform magnetic field. The generalized
formulas for Landau energy levels are derived, and the corresponding wave
functions are constructed. The new formulas for energies in presence of ex-
ternal magnetic field, in principle, allow to experimentally distinguish such a
particle. The restriction to the case of neutral vector boson (the uncharged spin
1/2 particle with anomalous magnetic moment) is performed in Sec. 2 — Sec. 6.

In Section 7 we give some details of the general theory of the Shamaly—
Capri particle; in particular, we describe some features of this theory extended
to General Relativity.

2. The Separation of Variables

The wave equation for spin 1 particle with anomalous magnetic moment [6, 7]
may be formulated in the form

1e
<5uDu + M)\?’)\;F[MV]PJ[NV] + M) =0, (D)
where the 10-dimensional wave function and the DKP-matrices are used:

ll’u ) ) J[;u/] = B}Lﬁl/ - Bl/ﬁu )

U —
)

where P stands for a projective operator separating from W its vector component
V,; D, = 0, —ieA,; A3 denotes an arbitrary complex number (see notation in
Sec. 7). In tensor form, (1) is':

D9, — D, + M3, =0,
DV ) £ 256 AN 5F],, Yy + MY, = 0.

By using DKP-matrices, we apply the method of generalized Kronecker’s sym-
bols [20] %
Bu:eyr[’/u] +6[V/'L]7V7 P:6V7V7
(e*P)op = bacopp, eBeCPigoetl,

Oyl [po] = %(5/1/35'/0 — Ouodup) »

"In Minkowski space, the metric with imaginary unit is used, since x4 = ict.
The indexes A(B, C, D, ...) take the values 1, 2, 3, 4, [23], [31], [12], [14], [24], [34].
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and the main relationships in the DKP algebra read:

5)\,060 - 5)\06p ;

[ﬁ)\v Jpo]]f

We use the following representation for DKP-matrices:

Buﬁuﬁp + Bpﬁuﬁu = 5ul/ﬁp + 5p1/6u )

0

0

0 00 -1

0

0

0
-1 0 0

0

0

0

0

0
0
0
0
0
0

0

0

0 0 -1

0

0
0
0

0
0
0
-1

0 010

0000
-1 0 0 0
0000

0
0
0
0
0
0
0
-1

0
0
0
0

0000
0000
00 00
0000

0
0
0
0
0
0
-1

0

-1 0 0 0

0 O

0
0
0
0
0

0
0
0
0

0

0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O

1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
-1

1

0
0
0
0

0
0
0

0

0

0
0 00

pr =
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[es}
[es}
[es}
[es}
[es}
[es}

Bs =

O OO o OO o
OrHr OO oo O oo
_H O O OO o O oo

O O OO O O oo
OO oo o oo O oo

O O OO O OO oo

OO OO O OO o

O O OO O OO+
OO oo oo O+ oo

[es}
[es}
[es}
[es}
[es}

A OO0 oo o0 o0 oo oo

A uniform magnetic field is specified by the relations

1 1 5
A1:_§Bx27 A2:§Bx17 A3=0, A4=0, B=(0,0,B),

F[l“/] - 3,“4,, - 3,,14“, F[12 - _F[Zl] - .B7 F[13] - 07

The non-minimal interaction through the anomalous magnetic moment is given
by the term

e N e ¥
iM)\g)\gF[W]PJ[W] = iQM)\g)\gBPJHQ] .

Correspondingly, the main equation (1) is written as

B1(01 + %B@) + [2(02 — %Bxl) + 303 + B40s%

£2 AN BP oy + M| W = 0. @)
Let us introduce the matrix Y = iJjj9) = i(8182 — B251); it satisfies the
minimal polynomial equation Y (Y — 1)(Y + 1) = 0, which permits to define
tree projective operators:
) 1 1
Py+Po+Po=1, By=1-Y’, Pi= Y(Y+1), P.=Y(Y-1)
and resolve the wave function into three components:

Ug=PW, U, =P 0, U_=P VU, U=U_+4TU,+T,.
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By transforming (2) to cylindric coordinates

) x
Tl =Trcos¢, xo=rsing, tan¢:—2,
x

0 cosqﬁa smqﬁﬂ 9 _, ¢2+COS¢3
o1 %r T v 8¢ 0z Cor 1 9¢
we get
B1(cos 43% — Sl:(ﬁ% + iBorsin ¢)+

cos¢p 0

+B2(sin qﬁ% + " % —iBorcos @) + (8303 + 404 + TPY + M) | ¥ =0, 3)

where we use the following shortening notation:

eB
2

We further act on (3) by Fy; by applying the identities
Pofbs = B3Py, Pofa= PPy, PY =YP,

By
= By, i4M)\3)\§ =T. “)

Popr=(1—Py) =Bi(Py +P-), Pofa=p2(l—F) = PPy +P-),

we get
[B305 + 404 + M| Yo+

+ {51(005 ¢>% - Sli ¢ c’)a(b) + B2(sin ¢>— + C0:¢ c’)a(b) + iBo7sin ¢f1 — iBor cos ¢52}

1o} 1o} 1o}
+ {51 (cos qba — Sl: ¢ 8¢>) + B2(sin qi)— + C0:¢ 8¢>) + ¢Bor sin 31 — iBor cos ¢ﬁ2:| =0,

where we took into account the identities:

YPh=0 = TYVY=I(YP)¥=0.
By introducing the notation

B+ = 7(51 +if), B-= 7(51 — i),

Complimentary Contributor Copy



Techniques of Projective Operators Used to Construct Solutions ... 53

we can transform the previous equation to the form

[B305 + 404 + M| Yo+

1 [ 4ig, 0 00 6, 0 10
+7§ [e 5,(5 ra¢+Bor)+e m(— 99 Bor)| O+
A | isg (O 10 igg (0 10
+\/§[e ﬁ,(ar+ra¢+Bor)+e m(ar 90 Bor)| V- =0

By making use of the projective operators

1
L = 5[5151 — 26151P282 £ (152 — B251)],

and the commutation relations for DKP-matrices, we prove the identities
B_Py = B4 P_ = 0; so the above equation is written simpler

[B305 + 404 + M| Yo+

+ose OB (5 — L5 — Bor) Ve + Jset OB (5 + L h + Bor)V- = 0.
4)
Now, we act on (3) by 1 — Py = Py + P_; this gives

(1—Py)p (cos ¢— —

(1 Ry)fe (sinqsg + 9590 iByr cos ¢> Tt

Sligb 9 4 iByrsin ¢> U4

r

+ (305 + 404+ TPY + M) (V4 +V_)=0.

By using the identities (1—FPy) 51 = (1P and (1—Fy) 2 = B2 Py, we transform
this equation to

Bi(cos qﬁi .
+52(Sln ('b('?r COT, )\I’O — 1Bor cos pBa W+
+ (0303 + 404 + TPY + M) (¥, +V_) =0,

ag)\l’o + 1 Byrsin ¢81 ¥+
s¢ 9

from which follows that

% (6B (Z — & — Bor) + " B_(& + L + Byr)] o+

r

+ (0303 4+ 404+ TPY + M) (U, +V_)=0.

(6)
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Let us act now on (6) by (1 + Y'). Because
1 1
5(1+Y)P+ == P+, 5(1+Y)P, == O7 YB, == ﬁ,PO, Y6+ - —6+P0,

the above equation simplifies to

1 4, o i

0 Oy +TPY + M)Wy + —=e™B_ (=~ + —+ Byr)¥y=0. (7
(8303 + B104 + + M) ++\/§6 5(ar+r+ 0r) Yo (7)
Similarly, by multiplying (6) by %(1 —Y') and taking into account the identities
1 1
5(1—Y)P+ =0, 5(1—Y)P, =P, Y3 =p-F, YBi=-0F,
we derive
(8305 + 404 + TPY + M) W_ + ! *i%(a ' _p YWo=0. (8)

_+ —=e — — — — DByr =0.
303 404 V2 5 75 o7)¥o

Now, by considering the relations
YPy = %(Y3 +Y?) = %(1 +Y%) =Py, YP_= %(Y3 -Y?) = %(1 -Y?)=-P_,
we transform (5), (7) and (8) to the form

[B305 + 404 + M| Yo+

1 g 10 1 ., g 10

L mivg (919 L tieg (9O _
+\/§e B+(ar 90 Bor)\I’++\/§e 6,(ar+ra¢+Bor)\I’, 0,
(8305 + 404 + TP + M) U + Letiog (3+1+B )W =0

303 404 + \/56 5 T r o7")¥o =Y,
(3505 + 0304 — TP+ M) V- + —e *Bi(5; = =~ Bor)Wo=0. (9

To separate the variables, we search for three components of the wave func-
tion in the form

Uy = otPata P33 eim¢f0 (r), Ui= otPata P33 ei(mi1)¢f+ (r).
The resulting from (9) radial equations are written in symbolic form as

(ip3B3 + ipafs + M) fo+

Complimentary Contributor Copy



Techniques of Projective Operators Used to Construct Solutions ... 55

1 d m+1 1 d m-—1 -
+ﬁﬁ+(%+——307“)f++ﬁﬁf(%— " + Bor)f- =0,
(ip3Bs + ipaBa + TP + M) fr + -4 (2 ™ 4 Boyr)fy =0
1P3P3 T 1P4P4 )f+ ﬁf(% 7 OT)fO— )

1 d
(ip353+ip454—FP+M)ff+ﬁﬁ+(%+%—Bor)fozo- (10)

3. The Radial System

By using the notations

_ B2 . g2
am = %( % = TBOT )s bm = %(*j—r + = Bor ), ip3B3 +ipafs = ip,
the equations (10) are written shorter
(ip + M) fo+ Brams1fy — Bbm 1 f- =0, (1)
(ip+TP+M)fr —B-bnfo=0, (12)

(ip—TP+ M) f-+ Bramfo=0.

We further act on (11) by the operator

1 _ _
(M+TP), where P=1—-P.
M+T
This yields
M +TP)ip M +TP)(M+TP -
(M 4+ TP)ip+ ——— (M + TP)(M + TP)|

s M+ TP)5 b fo =0

‘We note the relation
(M +TP)(M+TP) M?*+MIP+MIP+1I?PP  M?+ MID
M+T a M+T - M+T

which is valid due to the identities P + P = 1, PP = PP = 0. We introduce
the notations:

M+TP M +TP
7'A:A D = /'
var P4 a5
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Then the above equation transforms to
(A+ M)fy — Bl bmfo=0.

Similarly, we act on (12) by the operator

1 _ _
M-TP P=1-P
M—F( ) ’

which yields
1 _ _
M —TP)ip M-TP)(M-TP)| f-

(M = T'P)ip+ ———(M ~TP)(M ~TP)| -+

+M_F(M—F]5)ﬁ+dmf020.

Considering the identities
(M —TP)(M —TP) M?—-MTP—-MTP+T?PP M?—-MT _ u
M-T N M-T S M-T

and the notations

(M-TP) . _ . M-TP
M—-1r =% TymCr

the above equation becomes

(C+M)f- + Blinfo=0.

6+:6£}7

Thus, the radial system can be written as
(ip + M) fo + Biams1 f+ — B—bm_1f- =0,
(A+ M)fy — B bmfo =0,
(CH+M)f-+ Blamfo=0.

To proceed with these equations, we introduce the matrices® with the prop-
erties

(ip+ M) (ip+ M) = p* + M?,
(A+ M)(A+ M) =p* + M?,
(C+ M)(C+ M) =p*+ M?. (13)

*We take in the account that p* = p2 + p2
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In fact these formulas determine the inverse matrices to within numerical factors
(p?+ M?)~1. Then the system of radial equations can be rewritten alternatively

(ip + M)(p? + M?) fo + Biams1(p® + M?) fr = Bbp1(p? + M2 f- =0,
(P* + M) fy — (A+ M)B by fo =0,

(p* + M) -+ (C + M)Bamfo = 0.
(14)
The first equation in (14), with the help of the other two ones, transforms into
an equation on the component fi(7):

(ip+ M) (p* + M?) fo +
+ B am1 (A+ M)B b fo + B-bm—1(C+ M)Bamfo=0;  (15)

while the two remaining ones do not change

(P*+ M?)fy — (A+M)B b fo =0,

(16)
(p* + M?) f- + (C+ M)Bimfo =0.

In fact, the equations (16) mean that it suffices to solve (15) with respect to fy;
the two other components f, and f_ can be calculated by means of equations
(16).

To proceed further, we need to know the explicit form of the inverse opera-
tors (13). To solve this task, we first establish the minimal polynomials for the
relevant matrices. The minimal polynomial for (ip) is [3]

ip[(ip)* +p°] = 0. (17)
We further consider the operator A?:

A2 — W(iMﬁ +ilPp)(iMp +il'Pp) =

1
ar+y!

Due to the identities

= —M?*p% — MTpPp — MTPp*> —T?PpPp].

Bu:Pﬁu+ﬁuP:pﬁu+ﬁupvﬁuP:Pﬁuvpﬁu:Bupv
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PﬁuP = pﬁup = Ovﬁuﬁup = Pﬁuﬁuvﬁuﬁup = pﬁuﬁm
P+P=1PP=PP=0,

we find

1 Mp?
A= ———(-M?p* — MTp*) = — :
T+ D)= 3T
Thus, we get the minimal polynomial for A
M . Mp? (M +TP),. Mp?

A= (MA+TP)(ip)p’=— p)=———L _

B LA L 2)  § VIS ) VS (L iy Vo
Similarly, we find

Mp?
C?=— C.
M-T

Therefore, the needed inverse operators must be quadratic with respect to
the relevant matrices. They are given by the formulas:

(M +ip) = 47 [(ip)? — M (ip) + (p* + M?)],

(A+ M) = pQX/fM2 [1 - p2+]\]\//[[2+£MFA + M(pzinﬂMp) Aﬂ ’
(C+ M) = pﬁ/fj\/[2 [1 - p2+]]\\/[/[;EMFC + M(p2£/[]\/;2rfMF) 02} .
We need an explicit form for the powers of ip:
0 0 0 0 0 —p3 0 po O O
0 0 0 0 ps 0O O O ps O
0O 0 0 0o 0 0 0 0 0 pg
o 0 o o o 0 0 0 0 -ps
ip=i 0O p3 O 0O O O O O O O
-p3 0 0O O O O O 0 0 o0 |’
o 0 o o o o0 o0 o0 0 O
pp 0 O O O O O O O O
0O p. O 0 O O O 0O O O
0 0 ps. —p3 0O 0 O O O O
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we may prove the validness of the identity

ipl(ip)* + p°] =

X
o
OOm“_pOO oo o
o §oocoo oo o
MOOOOO oo o
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00 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0
00 p2 ppsa O 0 0 0 0 0
0 0 psps P} 0 0 0 0 0 0

oo o0 0 o 0 0 0 —ppa 0|_,
00 0 0 0 pi 0 psps O O
00 0 0 0 0 p2 0 0 0
00 0 0 0 psps O p3 0 0
00 0 0 —psps O 0 O P2 0
00 0 0 0 0 0 0 0 0

Let us turn back to equation for fj, rewritten in the form
P+ M»2fo+  + (M +ip) By ams1 (A + M) BL by fot
+(M +ip) B b1 (C+ M) B aymfo=0.
Taking into account the explicit form for inverse operators, we get
(p* + M?) fo + 37z [(iD)* — M (i) + (p* + M?)] By Q1%

M+T M+T 2 A
X [1 — A T e A } B b fo+

+7z [(19)2 = M(ip) + (p? + M?)] B b1 %

x [1 B p2+]z\\/[/12 FMFC + e 2%\/;2{Mr) 02} By tmfo=0.

Now, by considering the formulas

MATP 2 _ _ Mp?
A=W, A= —55r
_ M-TP ;» 2 Mp?
C=3rw, O =—3y7,

pL=MPg g = MIPg
we transform the above equation into following one
(»* + M) fo+ 51z [(i9)* — M(ip) + (p* + M?)] B x
x [1 B p2+]V[JVI+2F£\/[r i+ 2+J(\/[2)+Mr} ]\J/{/[irrpﬁ* Gm+1bi fo+
wrz [(9)° = M(ip) + (p° + M?)] B x

SN2
X |:1_ 2%\42F1?\4F ZP+ 2+](\Z4p2),MF:| Mo FPB+ m— 1amf0—0
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After some manipulation with the use of identity p3.p = pS_p = 0, this
equation can be presented differently

{(p*> + M?) + deBm M2(p2+]1\42+M1“) M1+F X
X[ (p? + M? + MT)(ip)*Bs — M(p® + M? + MT)ipf+
+(p* + M?)(p* + M? + MT)By — (p* + M?)Byip(M + TP)+
+(p? + M) ()% (M + TP)B + b1 g igr—grry 27
X[ (p? + M? — MT)(ip)*B- — M (p* + M* — MT)ipB_+
+(p? + M) (p® + M? — MT)B_ — (p* + M?)B_ip(M — TP)+
+(p* + M?)B-(ip)*] (M —TP)B+ } fo = 0.

Now we take into account the explicit form of fo, ip, and matrices 3, 3_, P.
Then we obtain

0
0
I3
Ja
0 A 1 1
2 2 N
M b X
(" + M) | F "M2(p? + M2+ MT) M +T
fi2
0
0
f34
0 0
0 0
(M +T)fs 0
(M + F)f4 0
(p® + M?)(p? + M? + MT) 8 —iM(M +T)(p? + M? + MT) 8 -
M f12 0
0 0
0 0
0 (pafs — p3fa)
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—(M +T)(p? + M? + MT)

+M(M +T)(p? + M?)

(p* + M?)(p* + M? — MT)

—(M —T)(p? + M? — MT)

—M(M —

0

0
Pa(pafs — p3fa)
—p3(pafs — p3fa)

o

oo o000

0
0
p3fi2

pafi2
0

0

—(p3f3 +pafa)
0

B
l oo ©©
—~
-
&

g
!
.
=

N

oooEoo
=

0

0
Pa(pafs — p3fa)
—p3(pafs — p3fa)

o

[=NeleNoNol

I)(p* + M?)

- (p* + M?)

+ Bmflam

0
0
p3(M +T')(p3f3 + pafa)

pa(M +T)(p3f3 + pafa)
0

0
p>M f12
0
0
0

—iM(M —T)(p? + M? — MT)

- (p* + M?)

0

0
p3f12
p4f12

0

0

—(p3.fs + pafa)

0

0

0

X
M2(p2 + M2 — MT) M —T'

(=Nl NoNo Nl

o

(pafs — p3fa)
0

0
p3(M —T)(p3fs +pafs)
pa(M —T)(p3fs + pafs)

0

0

p>M f12

0

0

0
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From these relations we derive four equations:

1 1

2 2 ~ 7
M mt1bm
(P" + M7) fo+ M2+ M2+ MT) M+ T

{(p* + M?)(p* + M? + MT)(M +T) f3—
—pa(M +T)(p* + M? 4+ MT)(psfs — p3fa)—

—p3(p® + M?)(M +T)(p3fs +pafs) + psM(M +T)(p* + M?) fra}+
1 1
M2Z(p2 + MZ—MD)M —T

{(p® + M*)(p* + M? — MT)(M —T) f3—
—pa(M —T)(p* + M? — MT)(pafs — psfs)—
—p3(p® + M?)(M —T)(p3fs + pafs) — psM (M —T)(p* + M?) f12} = 0,

+bm71 dm

(18)

1 1
M2(p2+M2+MF)M+F><

{ (p? + M?)(p? + M2 + MT)(M +T) fa+
+p3(M 4+ T)(p* + M? + MT)(pafs — p3fi)—

—pa(p® + M?)(M +T)(p3fs + pafs) + paM (M +T)(p* + M?) fro}+
1 1
M2(p2 + M2 MD)M —T

{(®* + M?)(p* + M? — MT)(M —T) fat
+p3(M —T)(p* + M? — MT)(pafs — psfs)—
—pa(p” + M?)(M —T)(p3f3 + paf1)—
—paM (M —T)(p* + M?) f12} = 0,

(p? + M?) f4 + Gimy1bm

+bm71 dm

(19)

1 1

2 2 ~ 7
M b
(0" M) frz o+ b gy T ) T
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{M P>+ M?)(p* + M? + MT) f1 — M(p* + M*)p? fro—
—M(M +T)(p* + M?)(p3fs + pafi)}+

1 1
M2Z(p2 + MZ—MD)M —T

{M P>+ M?)(p* + M? — MT) f1 — M(p* + M?)p* fra+
+M (M —T)(p* + M?)(pafs +p3fa)} =0,

+bm71 dm

(20)

(p* + M?) fas+
1 1
M2(p2 + M2+ MT) M 4T
1 L
M2(p2 + M2 — MT) M —T

{—iM(p® + M? + MT)(M +T)(pafs — p3fa)}+

+d'm+1 I;m

+bm—16m —iM (p*+M?—MT)(M~T)(psfs—psfa)} =0,

T - - .
(p* + M?) f34 — M(am+1bm + bi—1Gm)(pafs —p3fa) =0. (21)

The equations (18) and (19) may be simplified to

~

(p° + M?)f3+ %{(ﬁ + M?) f3 — pa(pafs — psfa)—

(PP M)
p? + M? + MT

M (p* + M?)
p?+ M? + MT

p3(p3f3 + pafs) + p3fi2}+

~

b—1am
+ Ml2a { (0* + M?) f3 — pa(pafs — pafa)—

(PP M)
p?+ M? — MT

M (p? + M?)
P2+ M2 — MTP?

P3(p3f3 + pafs) — fi2} =0,

~

(p° + M?) f4+ %{ (p? + M?) f1 + p3(pafs — p3f1)—

P+ M)
p2 4+ M2+ MT
Bmfldm

M2

M (p? + M?)
p% + M? 4+ MT

Pa(p3fz + pafs) + pafia}+

{(®* + M?) fs + p3(pafs — p3fa)—
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P+ M) M(p* + M?)
P>+ M2 — MT P2+ M2 — prh

By multiplying the first equation by p4, and the second one by —ps, and then
summing the two results, we find

pa(psfs + pafa) — fi2} =0.

(p° + M?)(pafs — p3fa)+

Am l/\)m
+2 ]\}12 [(p* + M?)(pafs — p3fa) — p*(pafs — p3fa)|+
Bmf i
+M712a[(172 + M?)(pafs — p3fa) — *(pafs — p3f1)] =0

or
dm+1bm +bm71dm +P2 + M2 (p4f3 —P3f4) =0.

By taking into consideration (21):

(Gms1bm + b 16m) (pafs — p3fa) = —iM(p? + M?) fay.

we obtain

f3a = —% (pafs — p3f1)

We further consider (20), which simplifies to te form
(p* +M?)
M (p? 4+ M? + MT)

(p® + M?) frg + @y 1bm {M fr2 — (p3f3 + pafa) }+

(p*+ M?)
M(p® + M2 — MT)

+bm—1am {M f12 + (p3fs +pafa)} =0,

or
Am Bm
Sz + M(ngT/flqu){Mle — (p3.f3 + pafa) }+

bmf A'm
+W13,Mp){Mf12 + (p3fs +pafa)} =0,
whence after elementary transformation we get

A~ A~ 2 2\2 272
. N p?+M2)2—M?I? | 2MTB
|:(am+1bm + b1) + 4 plez + S | Szt

+ [W(dﬁwﬂgm + Bmfldm) + %} (P3f3 +P4f4) = O;
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where the following identity is used:

~

dm+1bm —bm—10m = —2Bp .

Now, we turn again to (18) and (19):

~

(p° + M?)f3+ CAtﬂwlbm{(JDZ + M?) f3 — pa(pafs — p3.fa)—

Ve
(p* + M?) M(p? + M?)
oy +MFP3(P3f3 + pafa) + 2 +]\ﬂjpafm}#—
Bmfldm 2 2
IV { (™ + M?) f3 — pa(pafs — p3fa)—
2 2 2 2
p°+ M M(p*+ M
- (+ Ve &Fpg(pgfa +pafs) — e +(M2 — M)Fpgfw} =0,
2 a2 am1bm o 12 B B
"+ M) fa+ —5 5L (0" + M) fa+ p3(pafs — p3fa)
(p* + M?) M(p? + M?)
2 +]\411104(103fa + pafa) + PER Ve +MFp4f12}+
Bmflam 2 2
IV {(p* + M?) fs + p3(pafs — p3fa)—
2 2 2 2
p°+ M M(p*+ M
= (+ Ve ]24Fp4(p3f3 + pafa) — e +(M2 — M)Fp4f12} =0,

By multiplying the first relation by ps3, and the second one by p4, and summing
the results, we find
1

M(p? +2 +MT) [(M +T)(p3fs + pafs) +p2f12]+

(pafs + pafs) + Gmi1bm

1
M(p2+ M2 — MT)
Thus, we have found two equations for (p3fs + p4fs) and fia:

+bm—1Gm (M —T)(psfs + pafs)] — p*f12] = 0.

~ ~ 2 242 212
~ ~ +M —M-T 2MT B
[(am+1bm + bmflam) + (p pglng + p2+1wgi| f12+

+ [W(émﬁ»li’m + Bmflaf’m) + %] (p3f3 +p4f4) =0;

{(p* + M?)2 — M?T?}(psfs + pafa) + (p* + M2 = T2)(am41bm + bm—1am)(pafs + pafs)—

2 N N 2 ap2
— 28070 (p3 fs + pafs) — p [F(ém+1bm +bm—1am) + %] fi2=0.
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These equations may be reduced to such a form, that the 2-nd order operator
(Gm41bm + bm—1Gy,) acts on a single function:

(222 —T) (psfs + pafs) + [dm+1(;m + bn—1dm +p* + M? — T2 — 2Bl F] fi2=0,

[dm+1(;m + b1 + p* + Mz] (psfs + pafa) + (pzf 2BOP ) fi2=0.

Thus, the final form of the equations for the four functions fs, f4, fi2, f34
has the following relatively simple structure:

1
fao= =57 (Pafs = psfa), (22)
(b + b1 + 9% + M%) (pafs = pafa) = 0, @3)
N i i N 2 2 2 2By
(om1bm + bt + p? + M| (pafa + pafs) = —p*(C = =) frz, 24)

|:dm+16m + gmfldm +P2 + M2:| f12 =

=Ir (- %) fio+ (T = 230) (p3f3 +pafs)-

The analysis of (22) and (23) can be now clearly done. The second sub-
system (24)—(25) is solved through diagonalizing the mixing matrix.
To this aim, let us introduce the new functions

(25)

Oy = (p3fs +pafa) + Mfiz, Po= (p3f3+pafa) + Xafio, (26)

where A1, Ao stand for the roots of the equation \> — \I' 4 p? = 0:

1 1
:§<F+\/F2—4p2>, )\2:§<F—\/F2—4p2>.
So we get two separate equations:

(dm+16m + 6mflam +P2 + M2 + )‘/1,2> (1)1,2 = 07

where \| = (282 —T')\1, and N, = (252 —T)\,.
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4. The Energy Spectra

We note that, explicitly, the radial equations read

d? 1d m — Byr?)?
(2 e o= 0 e =0,

In the variable z = | By|r?, the equation for ®; takes the form

2 B 2
[4|Bo| (md——i— i) | Bol(m — xBo/|Bol) Fe2— M?—p? _)\/1] B =0.

dz? = dx T

First, let be By = —|By|; then we have

=0.

xd_2+i_(m+x)2+e2—M2—p§—)\’l B,
dx? = dx 4x 4| By|

With the substitution ®; = z4e~®y, A = |m|/2, c = 3, we get

d? d Im|+m+1 € —M*—p3—N\] =
4 1-2)2 - & =0.
[mdaﬂ Himl+1-2)3 ( 2 ABo| =0

This is a confluent hypergeometric equation; to get polynomial solutions we
must impose the restriction

Im|+m+1 € —-M?—p3— X\

2 4By -

whence it follows that
e — M? —p3 — Xy =2|By|(m + |m| + 1+ 2n).
Hence, the energy spectra are
®y, €] — M? — p3 = 2|Bo|(m + |m| + 1+ 2n) + X} ,.
By using the simplifying notations

2B
2|Bol(m+|m|+1+2n) =N, —p*=e—pi=E>0, WO—F:x,

N, = %(F+ VT2 +4E), N, = %(F — T2 +4E).
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the formulas for energy levels read
®;, By=-|By|, E—M?*=N+2%(+VI?+4E),
®y, By=-|By|, E—-M*=N+%T—-VI?+4E).

We solve these equations for E:

2F —2M? — 2N — ol = +2/T2 +4E —

2 _ 272
2 =2N +2M? + 2T, EQ—E(z+x2)+%:O;

and the roots are

2
E1 = Z';l’ + 5\/(Z+.%’2)2 - (22 —$2F2),
2
1
By = ZZ”““ - VE+ PP = (@ -T2, @7

To have both E; and Es real-valued and positive (such that these refer to phys-
ical energy levels), we require

22 T? >0, z+22>0, (2+2%)%— (2% —2°T? > 0.
We consider the first inequality
22 —2’T? = (z—aT)(242T) >0 = (2N+2M?)(2N+2M*4+22T) > 0;
this holds true if we impose the following restriction*:

2| By 2| By
I'>0 <« — 4T I'<<0) <= —<I'<0. (@28
. (M + ) = 28)

The second inequality
z+2% = (2N +2M?) + 2T + 2 > 0;
is valid due to (28). The third inequality 2222 + 2* 4+ 22I'2 > 0 is valid due to

z=2N +2M? + 2T, 2T > 0.

*We remind that By = —|Bo| < 0.
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Thus, we get one simple restriction on the parameter I':

2|B
Bo= B, 2Bl _p oy, (29)
which ensures that both spectra are physical (real and positive) for all the values
of quantum numbers. In the case under consideration, By = —|By| < 0, from
(4) it follows
_|BO| *
I'=44 A3A3;
M 3N\3

therefore we have the only case when the upper sign is related to I < 0.
Similar results can be obtained for the case of the opposed orientation of the
magnetic field, By = +|By|:

Dy, €] — M? — p3 =2|By|(—m+ |m| + 1+ 2n) + X| 5.
With the similar notation
2|Bo|(—m—+|m|+14+2n) =N, —p*=-pi=E>0, ——-T=uzx,

N, = %(F+ VI2Z +4E), X, = %(F — VT2 +4E),

we formally derive the same formulas for energies:

2
1
E1:z+2x +5\/(2%_#)2_(22_x2112)7
2 1
Ey = sz —5\/(z+x2)2—(z2—x2f2).

In order to have energy values positive and real-valued, we must impose the
following restrictions

2422 >0, 222 T?>0, (2+2%)%— (2% —2°T? > 0.
From the inequality
22—2’T? = (z—2aT)(242T) >0 = (2N+2M?)(2N+2M*422T) > 0
we get the main restriction’:

2| Bo|

2l >0 «— (- +DI'>0 «— TI<0.

>We remind that By = +|Bo| < 0.
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We note that the possibility of positive values I' > 0, I" > 2| By|/M is ignored,
because in this case the admissible region for I' does not contain the close to
zero values. The two remaining inequalities are valid as well:

2+ 2% = (2N +2M?) + 2T + 2 > 0;

2222 + 2t + 2 T2 > 0 (z=2N +2M?* + 2T, 2T > 0).

5. Conclusion to Sections 2—4

Let us summarize the main results of the Sections 2—4. Three series of the
energy levels are found; two of them substantially differ from those for spin 1
particles without anomalous magnetic moment.

The formula (27) and its restriction (29) provide us with two series for en-
ergy levels® in both cases By = —|By|, and By = +|By:

E,| = # + 5/(z + 22)% — (22 — 22T?),

By =22 _ L /2?2 — (22— 2212).

To assign to the energies £ and E a physical sense for all the values of the
main quantum number n = 0,1, 2, ..., one must impose special restrictions —
which are explicitly formulated — on the values of the anomalous magnetic mo-
ment. Without these restrictions, only some part of the energy levels correspond
to bound states.

The third series of the energy levels (see (23)) has the form:

Bo = ~|Bo| : B3 = ¢~ M>—p§ =2|Bo|(m+ |m|+ 1+ 2n),
By = +|By| : Es=e*—M?—p§ =2|Bo|(—=m+ |m|+1+2n);

in these states the anomalous magnetic moment does not manifest itself at all.

5We remember the formal change m == —m, when inverting the orientation of the magnetic
field
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6. Neutral Spin 1 Particles with Anomalous Magnetic
Moment

The case of a neutral vector boson exhibits a particular interest; now the radial
system for fs, f4, f12, f34 becomes simpler:

far= =17 (pafs—pafs),  (30)

(m b + b1t + %+ M2| (pafs = pafs) =0, G
|:am+16m + b1 + P+ Mﬂ (psfs +pafs) = —p°Tfi2, (32
|:dm+16m + b1l + P* + MQ} fi2 =T%f1o + T(psfs +pafs) . (33)

Solving (30) and (31) is a trivial task. The system (31)—(33) can be solved
trough the diagonalization of the mixing matrix. Let us introduce the notation

1 o 7 7 A
A = f |:am+1bm + bmflam +p2 —+ M2:| , (p3f3+p4f4) = @17 f12 — (1)2 :

then (32)—(33) reads in matrix form as follows

sla =0 Tl = as|a]=s|t T ||
Requiring
2
S|V =0 N ] e )
we derive
$11 812 '0 —p? :' At 0[] s11 s12
sa1 s22 || 1 T 0 A2 || s21 s22 |
which is equivalent to two sub-systems:
)—)\; 1 ) 11| _ )—)\2 1 ) $21 | _ g
—p* (T'=X1) || s12 ’ —p* (T =X2) || s22

We use solutions of the form
A =50+ T2 —4p?),s11=1, s12=Ap;
Ay = %(F— VIZ —4p?), so1 =1, sp2 = Ao
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Thus, for the functions ®; and @5, we get the separated equations
(dm+1i)m + Bm,ldm +p2 + M2 - F)\LQ) (1)172 =0.

In explicit form, these read

> 1d m?
2 2 2 _
M2 24 Trhe=D, (L 4ty ") g,—0.
¢ Ps 2 ’ (er rdr r2) 12 =0

Let us search for solutions of the form & = 4B f(r); for f(r), we derive

A f 24 +1
_+< .

d A2 -—m? 24AB+B
3 +23)—f+< U i

o 5 +B2+D)f=o.

T T

By imposing the following restrictions on A, B:
A2—m?=0 = A=+|m|; B*’=-D = B=+iVD,
the above equation simplifies to

d’f df
—5 +(2A+1+4+2Br)—+ (2AB+ B) f=0.
rdr2+( +1+ r)dr+( +B)f
If we take the positive case A = + | m |, then the solutions are vanishing near
the point r = 0. Moreover, from physical considerations, we must require the

parameter D be positive, in order to agree with the correspondence principle:
— _ 2 2 _ .2
I'=0 = D—Dy=¢-M"—-p3>0.

Without loss of generality, assume that B = 44+ D. In the new variable, the
above equation will read as a confluent hypergonetric equation

2Br = —x, x%—#—(?fl—#—l—x)%—(/l—%%)f:o
that is

F'+(c—2)F —aF =0, a=A+1/2, c=24+1=2aq,
where

r=—2Br = ~2i\/M? —p3 + Thi2.
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Thus, for a neutral particle, no bound states exist, and the qualitative manifes-
tation of the anomalous magnetic moment is mainly revealed by appearing of
space scaling of the arguments of the wave functions, in comparison with the
case of particles without the magnetic moment. Formally, we have two sorts of
states depending on the sign of I':

A1,2, x:—QBr——Q\/M —p3+F (T £ /I? — 4p?)

There exists a third type of states in which the parameter I' does not manifest
itself in any way (see (31)):

d2 1d m2
<W+__+6 — M? —p? — r—2) (Pafs —p3fa) =0

rdr

for these states, the solutions depend on the ordinary (non-modified) argument

x:
xr = —2Br = —2iy/M? —p.

7. Shamaly—Capri Theory and General Relativity

First, let us show that in Minkowski space, the Shamaly—Capri 20-component
model for the spin 1 particle in absence of external electromagnetic field is re-
duced to ordinary DKP 10-component theory. We start with a free particle wave
equation

(iT%0, — m) ¥(z) =0, (34)

where the 20-component wave function includes the tensors @, @4, P(4p], P (ap),
and transforms by the following representation of the Lorentz group SO(3, 1)

=(0,0)® (1/2,1/2)® (0,1) & (1,0) & (1, 1)
and I'* are 20 x 20-matrices

I =—i(Aeh® — Aje? +
X2 G € — X5 g el Ng g e (k) )\*Qk elkalm.(35)
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(x) stands for complex conjugation, (gs,) = diag(+1,—1,—1,—1). In (35)
numerical parameters \; are arbitrary obeying to the following set of restrictions
(see [18]):

3
AN = SAsN5 =0, Ao — AsAj = 1. (36)

We determine the explicit form of the matrices I' by using basic elements of
the relevant matrix algebra e-5:

B.C AD

AB\D _ s A _BD _AB.C,D _
(6 )0_509 y € € =49

A, B,...=0, a, [ab], (ab),

where 5]-?4 is the generalized Kronecker symbol. The symbols with upper in-
dexes g/F are derived from § BA with the help of the Minkowski metric tensor.
We use the following Kronecker symbols:

e = 06 0% — 0§ 0L, glthled = gae ght — gad gbe.

) 1 1
5&)) = 6065 + 05 00 — 5 9% gea, gl oD = goe gbd g gad ghe 59“1’ g

and also the generators .J% for the Lorentz group representation

Jab _ (ea,b o eb,a) + gkn(e[ak],[bn] o e[bk],[an]) +gkn(e(ak),(bn) o e(bk),(an)) )

Let us transform now (34) to its tensor form with respect to @, @4, (g, P(ap):

)\1 8“<I>a =m®e y
=A@ + A2 0P — A3 0Py = m Dy,
)\; ( (‘9b<1>a - 8a<1>b ) =m (I)[ba] ,

1
~ A5 (D0 + 0a®y — 59000 Pe) = M Dy 37)

From the first and fourth equations in (37), by considering the relations (36), we
obtain

SN 9D — A3 0Dy = %)\3)@; 0% (D By — Oy,

or
) . X3N] o
A O — X3 0" = 0 0 By
2
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Then (see (37) and (36)) we get
—1 o) =moP
* ba b-
)\2 [ba]

Defining now
Uy = A0, Wiy = Ppay (38)
we obtain the ordinary Proca tensor equations
Wiy =mUe, 0V — 0pVq =mU . (39)
The last equation can be represented in DKP matrix form

W,

7 Ba _ _igbc(ec,[ba] - e[ba],C) . (40)
Vias)

(i 8%, —m)¥ =0, \11:’

So, the equations (34) and (40) are equivalent from physical standpoint, because
their solutions must be unambiguously mutually related.

The generalization of (34) to the case of arbitrary curved space-time with
the metric g,p(x) and any relevant ef’ \(x), may be performed in accordance
with the tetrad method of Tetrode—Weyl-Fock—Ivanenko [19]. Such an equation
has the form

[iI"(0,+ By) — m]¥ =0, (41)
or
(iT“Oq) + %rajcd%da —m)¥=0. (42)
We use the notation

a 1 ab v
F/’L == F el(lLa) y B/'L — §J e(a)vue(b)y,

Oay = €y O » Yabe = —(Ve(apa) el i
here V, represents the covariant derivative, while 7. stand for the Ricci rota-

tion coefficients.
Let us show that any two equations of the type (41)

[iT"(Dy + Bu) —m] ¥ =0, [{T"™(0, + B),) —m] ¥ =0, (43)
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referring to the respective tetrads related by a local Lorentz transformation
e(Z )(x) = Lab(x)e(’g) (z), are mutually translated to each other by means of
local transformation of the form ¥'(x) = S(z)¥(z):

o' 1 0 0 0 i)
@, 0 LS 0 0 o,
= , 44
<I>1ab] 0 0 LfL* 0 ) Pieq) @
(&
<I>(ab) 0 0 0 L;L, D (cq)
if and only if the following two relations are valid
STHS™' =T'", SB,S™ + 88,8 =B,,. (45)

The first one can be rewritten as

a, kb o—1 _ b p
ST e(a)S —Fe(b)

which is a known relation, which ensures the Lorentz invariance of the wave
equation (34) in Special Relativity. To prove (45), in its form

— Sres—! =12,

1 Llasabe-1, 8
SBaS™ = 28T *S7le (Vaew)s)

we express the tetrad e(,), in terms of primed tetrad. This leads to

L ety B ,
§BaS™H = S(STUSTH (L7 [ (0alL™ g + (L™ ey Vaels] -

By using the explicit form of S (see (44)) and of J%, we prove
SJPS™H = JL L.
Then we obtain
SB,S™' = Jm”L 200 (Lip) + B
We can infer the conclusion provided that

SB,S™t = Jm"Lba( b) -
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But the last relationship can by proved by using the known pseudo-orthogonality
condition for Lorentz transformations and the explicit form of S and .J?. Thus,
(43) are mutually related to each other by a local transformation of the type (44).

The general covariant matrix wave equation (42) may be translated to the
tetrad tensor form

M (O + %) @0 =m @,
N O ® + X2 (0 WD) + 7, Py + VP —
A3 (0D + %P ae) + VP ar)) =m Py,
23 (0 ®@s = oy ®r + 7% s®a — 7% Qa) = m Py,
X5 [(0y®s + I @r + 7,4 Ra + 7, Pa) —

1

— 50rs (000 + 77®4) ] =m Py (46)

Let us eliminate the components, and obtain the equation for the main compo-
nents ®, and <I>[Cd]. To this end, from the first and the fourth equation in (46) we
express ¢ and @ (,4) and substitute the results into the second one. Due to the
conditions (36) and the third equation in (46), we get

- )‘1( a(T‘)(I) - )‘3 [a(a)(l)(ra) + ’}/rda(l)(da) + ’Vacil(l)(dr)] =
e\

A3

2N

m

=00y ® — 7, 0y®s + 7% ®a — YV 0 Pe] -

(0D + 3PP + 1Py ] —

(75 @ + 2%y Pa—

Hence, we obtain

1 a C C
b (89D + %2 R + APy ) —
2Ag\E
=2 [0 D @+ ) Pa — 1T OB — %, O +

+ 7,00 By — A, B =mD,. (47)

Complimentary Contributor Copy



Techniques of Projective Operators Used to Construct Solutions ... 79

It remains to translate the equations (46) and (47) to the variables ¥, and ¥,
according to (38). In the end, we derive the tetrad generalized Proca system:

O W + % U + 77U —
—22sA5m [V W 9% ) Yo — 77 0P — 7" Oy Y +

+ 4,y Wy — P, U] = m T, (48)

Oy Vs — Oy Wa + 7% Ya — Vha Ya=m Vg . (49)
In (48), the term proportional to % determines an additional interaction term

for a a generalized vector particle with the gravitational field.
If we take into account the tetrad form of the Riemann and Ricci tensors
through the Ricci rotation coefficients (48) can be written as:

k k
Rabed = —Yabe,(d) T Vabd,(c) T YakeY'ba T YabnY'ed — YakdY be — YabnY de »

Rbr = Raﬁa == ’yarl?,(a) + ’}/aclz,(r) + ’}/T‘na’yban - ’yaka’ykrl? :
We finally get

[Rbr\llb _’ya}z 6(a>\1’b _’YTGb a(a>\1’b ] _m\I’T =0.

“ c c 2X3)\5
d \I’[m]-f—’yrb \I’[bc]-f—’ybc‘l’[br] - = %

Like in (39), the system (48)-(49) can be represented in matrix DKP form:

*

. a Z a Ci A( Aa a a Ny C Cy
{0 + 55 TG Veda— :ng (V=7 %) (7" =€) 0a) +Rok (" +€*") |-m} ¥ = 0.

It can be readily proved that the tetrad system (46) can be translated to the
generally covariant tensor form’:

M DB =m®,
—)\1{ Dg(I) + )\2 Da(I)[ﬁa] - )\3 Da(I)(aﬂ) =m (I)g s
A2 (Da®s — Dg®a) = m Plag),

1
— A3 [Do®3 + Dg®, — igagV’J(I)p] =mPpg) - (50)
The relations between the tetrad and the tensor components are:

— (a _ () () _ o(a)(b)
o =e0y, Dy =ePe) Py, PBag) =elPey D).

"We consider the notation V,, described by the equality D, = V4 — ieA,(z).
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As for (46), the system (50) can be reduced to the minimal form

2X3)}
m

D% By + 22D, Dy) 07 =m by,
A3 (Daq)ﬂ - Dﬂq)a) =m (I)[aﬂ] .
or, alternatively, to

2A3\}

D*¥ g4 + [Do, Dg]-¥* =m ¥y, (51)
DoV — Dg¥q =m V.

Taking into account that
[Da, Dg]- U = (—ieFpp + Rap)¥*,

A3A3

we conclude that the parameter in (51) determines both the anomalous
magnetic moment of the spin 1 particle and the additional interaction term with
non-Euclidean space-time background through the Ricci tensor R, g.

Conclusion

By applying the matrix 10-dimensional Duffin—Kemmer-Petiau formalism to
the Shamaly—Capri field, the behavior of a vector particle with anomalous mag-
netic moment is studied in the presence of external uniform magnetic field. The
separation of variables in the wave equation is performed by using projective
operator techniques and the DKP-algebra theory. The problem is reduced to
a system of 2-nd order differential equations for three independent functions,
which are solved in terms of confluent hypergeometric functions. Three series
of the energy levels are found; two of them substantially differ from those for
spin 1 particle without anomalous magnetic moment. To assign to them physical
sense for all the values of the main quantum number n = 0, 1,2, ... one must
impose special restrictions on a parameter related to the anomalous moment.
Otherwise, the energy levels corresponds only partially of to bound states. The
neutral spin 1 particle is considered as well. In this case no bound states exist
in the system, and the main qualitative manifestation of the anomalous mag-
netic moment consists in the occurrence of space scaling of the arguments of
the wave functions, in comparison with a particle which has no such moment.
Some features of theory of the Shamaly—Capri particle within General Relativ-
ity are given.
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Abstract

Traditionally, the automotive industry has been the largest employer of
robots, but their control is inline and programmed to follow planning trajectories.
In this case, in the department motor’s test of Volkswagen Mexico a semi-
autonomous robot is developed. To date, some critical technical problems must
be solved in a number of areas, including in dynamics control. Generally, the
attitude estimation and the measurement of the angular velocity are a
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requirements for the attitude control. As a result, the computational cost and the
complexity of the control loop is relatively hight. This chapter deals with the
implementation of a cheap Micro AHRS (Attitude and Heading Reference
System) using low-cost inertial sensors. In the present chapter, the technique
proposed is designed with attitude estimation and the prediction movement via
the kinematic of a 4GDL robot. With this approach, only the measurements of at
least two non-collinear directional sensors are needed. Since the control laws are
highly simple and a model-based observer for angular velocity reconstruction is
not needed, the proposed new strategy is very suitable for embedded
implementations. The global convergence of the estimation and prediction
techniques is proved. Simulation with some robustness tests is performed.

Keywords: estimation, quaternion, prediction of the movement, robot, attitude,
AHRS

1. Introduction

Robots have considerable potential for application in Volkswagen plants. Looking
at the four major sectors of a vehicle assembly operation, as follow:

1. PRESS. As a VW has installed high-speed pressed with integral part
handling.

2. BODY. They are seeking for robots that provide speed, accuracy, more
payload capacity and are being easy to integrate.

3. PAINTING. In this area they want to find robots that have the abilities to
do such things as see and felt.

In the motor test area, the assemblies of all of the instrumentation and wiring
systems, and the test per se, autonomous robotic and telerobotic systems have
been suggested. Industrial Robot has been considered for the different test.

To date, some critical technical problem must be solved in a number of areas,
including in dynamics and control. A prerequisite is state estimation where the
states typically are position, velocity and orientation. State estimation is especially
important where attitude control is needed. With attitude we refer to the robot’s
orientation relative to the gravity vector, usually described by pitch and roll
movements. Attitude estimation is usually performed by combining measurements
from three kinds of sensors: rate gyros, inclinometers and accelerometers.
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Figure 1. Robot and telerobotic systems.

The attitude (orientation) of a rigid body can be parameterized by several
methods: for instance, Euler’s angles, Cardan angles and unit quaternion. The unit
quaternion is a four parameter representation with one constraint. Therefore, it
yields the lowest dimensionality possible for a globally non-singular
representation of the attitude.

Several approaches have been applied to the attitude estimation problem.
These estimators fall into three main families. The first one deals with a constraint
least-square minimization problem proposed firstly by Wahba [1, 2], for finding
the rotation matrix.

The second approach is within the framework of the EKF (Extended Kalman
filter) [3]. Its major feature concerns the ability to fuse signals acquired from
different sensor types. An excellent survey of these methods is given in Ref. [4].

The third approach issues from nonlinear theory, and non linear observers are
applied to the attitude determination problem [5, 6, 7, 8, 9]. In this approach, the
convergence of the error to zero is proved in a Lyapunov sense.

In this chapter, an attitude estimator using quaternion representation is
studied. Two approaches are jointly used, namely a constraint least-square
minimization technique and a prediction technique. Thus, no assumptions of the
weakness (or not) of the accelerations are done. Therefore, the main advantage of
the approach presented in this chapter compared to others approaches, is that the
estimated attitude remains valid even in the presence of high accelerations over
long time periods.

The chapter is organized as follows. First the algebra in a quaternion-based
formulation of the orientation of rigid body is given. After, the problem statement
and the kinematic model is formulated. Then attitude’s estimation and prediction
via quaternion is presented. Finally, some simulation results are given.

Complimentary Contributor Copy



88 B. B. Salmerén-Quiroz, G. Villegas-Medina et al.

2. Mathematical Background

As mentioned in the introduction, the attitude of a rigid body can be represented
by a unit quaternion, consisting of a unit vector € known as the Euler axis, and a
rotation angle B about this axis. The quaternion gis then defined as follows:

B
coS — qo
a={_ %|=(5)em &)
esm;
where
lgo®+G =1
{a1q"+q"q @)

 q=1[q04"1",q0 € R,G € R%}

d = [q192 q5]7 and g, are known as the vector and scalar partis of the quaternion
recpectively. In attitude control aplications, the unit quaternion represents the
rotation from an inertial coordinate system N (x,,, y,,, z,) located at some point in
the space (for instance, the earth NED frame), to the body coordinate system
B(xy, vy, zp) located on the center of mass of a rigid body.

If 7 is a vector expressed in N, then its coordinates in B are expressed by:

b=aQ@rQ®q (3)

—— -
where b = [0 bT] and r = [0 #T]” are the quaternions associated to vectors b
and 7 respectively. ® denotes the quaternion multiplication and g is the
conjugate quaternion multiplication of g, defined as:

7 =1la0—q"" (4)

The rotation matrix C(q) corresponding to the attitude quaternion q, is
computed as:

Cl@) = (@0® = G" DIz + 2(4G" — qo[G*D ()

where I5 is the identity matrix and [é*]is a skew symmetric tensor associated with
the axis vector &:

Complimentary Contributor Copy



A Quaternion Approach in the Estimation of the Attitude ... 89

&\ 0 & &
[fx] = <fz) = ( &3 0 _f1> (6)
$3 —$2 &0

Thus, the coordinate of vector 7 expressed in the B frame is given by:
b= C(q)? @)

The quaternion attitude error used to quantify the mismatch between two
attitudes g, and g, is computed by:

4de= 01 ® 7 (8)

The reason that quaternions found applications in computer graphics,
computer vision, robotics, navigation, molecular dynamics, flight dynamics, and
orbital mechanics, is their two distinct geometric interpretations.

A. They can represent rotations in 3 and 4 space (and are called Rotation
quaternions in this case).

B. They can represent an orientation (rotation relative to a reference position)
in 3D space, they are called orientation quaternions or attitude quaternions.
Algorithmically they require a less number of operations to implement rotations
(when compared with the multiplying a vector with a rotation matrix that involves
Euler angles). Any rotation of a 4D vector can be represented by the product of
two Quaternions with that vector. Two excellent references describing these
details from an application perspective are:

Note

Each of the algebras of complex numbers, Quaternions, Octonions, Sedenions,
etc. (or 2n-ons) are generalizations algebras of the previous in the list and they
contain all the previous ones as sub-algebras, while all are special cases of
Cayley-Dixon Algerbas or Hyperlinear Algebras as some are calling them.
Although Quaternions are attributed to Hamilton (1843) it was C.F. Gauss
who first discovered them earlier (1819) but published his work in 1900. Also, in
1864 J.C. Maxwell in his first paper (before the book) on Electromagnetism
(James Clerk Maxwell, “A Dynamical Theory of the Electromagnetic Field”
(Royal Society Transactions, Vol. CLV, 1865, p 459) formulated
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Electromagnetism in terms of 20 quaternion equations that also appeared in the
1873 edition of “A Treatise on Electricity and Magnetism” aka The BOOK.

3. Problem Statement

Good models of industrial robots are necessary in a variety of applications, such
as mechanical design, performance simulation, control, diagnosis, supervision and
offline programming. This motivates the need for good modelling tools. In the
first part of this book the foreword kinematic modelling of serial industrial robots
is studied, the focus is on modelling the foreword kinematics. The main interest is
the principal structure, and issues regarding efficiently implementation have not
been considered. The work is based on homogeneous transformations using the
Denavit-Hartenberg (D-H) representation, which gives coordinate frames adapted
to the robot structure and a quaternion approach in the attitude estimation
modelling is presented.

Attitude is a term used to describe the orientation of a vehicle in three-
dimensional space. The attitude of the articulated arm can be described using
several different parameters (e.g., quaternions, Euler angles, direction cosine
matrices, etc.) that have been described in some detail in earlier chapters of this
book. Robotic attitude determination systems provide a means for measuring or
estimating these parameters that describe the end effector and the robot’s
orientation. The outputs of these systems are used for vehicle guidance,
navigation, and in this case, control and attitude determination. The focus of this
chapter is attitude determination systems for small robots, which, for the purposes
here, are defined to be robot with a total mass between 150 kg and 300 kg and fit
in a volume envelope roughly 50 cm x 50 cm x 60 cm in dimension. Designing
attitude determination systems for these small articulated robots represents a
challenging and specialized task; sensors and their processing must also be made
to fit within the limited size, weight, and mass specifications while still
performing to high accuracies for many applications. This chapter highlights these
challenges (particularly for a robot like showed in Figure 3) and discusses current
and future developments aimed at addressing them.

In the case of the attitude estimation, one seeks to estimate the attitude and
accelerations of a rigid body. From now on, it is assumed that the system (AHRS)
is equipped with a triaxis accelerometer, three magnetometery and three rate gyros
mounted orthogonally.

In this chapter, we describe the body’s kinematic of the model. In order to
estimate the arm’s robot position with respect to an inertial frame, a module
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containing three rate gyros, three accelerometer and three magnetometery
assembled in tri-axis, are positioned in the extreme of the arm’s robot. Thus, the
attitude for the articulation is estimated. The combination of this information
jointly to a knowledge a priori of the robot makes possible to obtain information
on the end effector respect to the base.

3.1. Inertial Sensors

Inertial sensors describe a pair of measurement devices used to determine a subset
of the kinematic state of the body to which they are attached. The sensors are
accelerometers, magmetometers and gyrometers. Accelerometers measure specific
force—the algebraic sum of linear acceleration and gravitational acceleration
normalized by mass. The name “accelerometer” is somewhat of a misnomer, as
the sensor actually measures force rather than acceleration. However, by proper
data scaling, a measurement of acceleration can be produced. A triad of
accelerometers arranged orthogonally will measure the specific force vector of a
vehicle. Gyrometers (or gyros for short) measures angular rate or integrated rate.
Integrated rate is sometimes called “incremental angle” or simply “delta theta”
A6. Lower cost (and quality) gyros tend to be rate gyros measuring rate, while
higher end sensors are rate-integrating sensors whose output is A@ Similarly, a
triad of gyros will provide a measurement of the angular velocity vector.
Normally, a triad of accelerometers and gyros are packaged together to form what
is called an inertial measurement unit (IMU/AHRS).

3.2. IMU/AHRS Kinematic Equations

As opposed to the limited acceleration data from accelerometers, magnetometers
and gyros can provide continuous useful information for attitude determination.
The output of the triad of rate gyros is a measurement of the angular velocity
wg/i. If rate-integrating gyros are used, then the output will be AB,’;/L-. The
subscript b/i indicates that these sensors measure the angular rate of the body
frame relative to the inertial frame. The superscript indicates that this
measurement is expressed in F? Without a loss of generality, the discussion
below will focus on the use of rate gyros and, thus, w = a)f,’/i as the basic
measurement processed. This is motivated, in part, by the fact that rate gyros are
more typical in robotics applications.
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The equation describing the relation between the quaternion and the body’s
kinematic is given in introducing the angular variation w = [wxwwa]T from
this, it follows.

q = 20W)q(t) = SE(@OW() ©)

where Q(w) y Z(q) are defined as:

—[wx] w
Q(W)=[ l (10)
—wT 0
£(q) = [qo]g’x?--:; [qx]] (11)
—q

The matrix [wx] and [gx]are obtained by the cross product issue of dxb=
[d x]b with [d x] € R3*3:

0 —-az3 a,
[cf x] = [ as 0 —all (12)
-a, 0
The quaternion must be:
q'q=q"4+ q° = (13)
In the other hand, the matrix Z(q) has the relation:
ET(QE(Q) = q"ql3x3 (14)
E(@E"(@) = q"qlaxa —q"q
ET(@)(q) = O3x
Generally 27(g)A = —ET(1)q, forany 1 € H.
A(Q) = (q0* = §"DIsx3 +24G" — 29[ X] (15)

Complimentary Contributor Copy



A Quaternion Approach in the Estimation of the Attitude ... 93

That is denoted like the orientation matrix 3-D of dimension 3x3.

4. Robot Configuration

The robot links form a kinematic chain. When the kinematic chain is open, every
link is connected to every other link by one and only one chain. If, on the other
hand, a sequence of the links forms one or more loops, the robot contains closed
kinematic chains. In Figure 2 example of configurations of robots is showed.

IRB2400 has closed IRB340 FlexPicker has IRB6600 has an open
kinematic chains closed kinematic chains kinematic structure

Figure 2. Robot configurations found among the ABB robots.

The robot has a closed kinematic chain due to the so-called parallelogram-
linkage structure, represented by a mechanical coupling between motor, placed on
the foot of the robot, and the actual link 3. It can also be seen from the figure
(from the ABB internet web site) that has an open kinematic-chain structure.
Robots having an open kinematic chain can be divided into the following types,
based on geometry. The Cartesian robot has three prismatic joints and the links
are mutually orthogonal, which gives that each degree of mobility corresponds to
a degree of freedom in the Cartesian space. Changing the first prismatic joint to a
revolute joint gives a cylindrical geometry, where each degree of mobility
corresponds to a degree of freedom in cylindrical coordinates. Replacing the first
two prismatic joints by revolute joints gives a spherical robot, where the degrees
of freedom are in spherical coordinates, similar to the cases above. SCARA stands
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for selective compliance assembly robot arm, and a SCARA robot has a
mechanical structure with high stiffness to vertical load and compliance to
horizontal load. The anthropomorphic robot has three revolute joints, and has
similarities to a human arm. The workspace is approximately a portion of a sphere
and the robot structure can be seen in many industrial applications. The types are
explained in more detail in Sciavicco and Siciliano (2000) and Spong et al.
(2006), among others. The work in this thesis is limited to serial robots, that is,
robots with an open kinematic structure, and the class of parallel robots that can
be rewritten to this structure using a bilinear transformation. Especially serial
robots having only revolute joints, so-called anthropomorphic robots, are studied.

Figure 3. Virtual robot.

In this chapter we obtain the attitude from the robot show in Figure 3 with an
open kinematic structure.

Using coordinate frames attached to each joint, shown in Figure 3, the
position and orientation of the robot tool can be defined in the Cartesian
coordinates Ci, with respect to the base frame Ro of the robot by successive
coordinate transformations. This results in the relation.

I.,,n = 1: 3, Distance between the center of rotation and the center of attitude
sensor module.

I,,n = 1:3, Distance between the position of the attitude sensor module and
the end of the segment in consideration.

C,,n = 1: 3, is the attitude sensor module.

The point 0 is supposed to be fixe.
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Table 1. Coordinate systems

link 0, d, a; a
1 6 0 T
1 a; 2
2 9, I 0 0
3 0 ! 0 z
3 2 2

Table 2. Quaternion-based model

Quaternion vector
0 _[ 0, 0 si ﬁ] v
= cos; 0 sin > 1
[Z) 6
R= [COSTZ sin72 0 0] v,
[Z) 6
R= [COSTS sin73 0 0] Vs

The angular velocity @, is obtained by finite differences from equation (9) at
the instants k and k-1 (k estimation instant).

Wep = ZET(qCI)qCI (16)

According to the robot, the model for foreword kinematics based on the
convention Denavit-Hartenberg is defined for each one of the coordinate systems
in Table 1.

This model can be compared with the quaternion-based model, which is
Simplified in Table 2, so it is possible to observe that the quaternion-based model
is significantly more compact, which reduces the number of operations
significantly.

4.1. Modeling Sensors

1) Rate Gyros: The angular velocity @ = [a)1w2w3 ]T is measured by the rate gyros,

which are supposed to be orthogonally mounted. The output signal of a rate gyro
is influenced by various factors, such as bias drift and noise. In the absence of
rotation, the output signal can be modeled as the sum of a white Gaussian noise
and of a slowly varying function. Since an integration step is required in order to
obtain the current attitude quaternion (9), even the smallest variation of the rate
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gyro measurement will produce a wrong estimation of the attitude. The bias is

denoted by ‘7, belonging to space R®. The rate gyro measurements are modeled
by (Brown y Hwang, 1997):

By = B+ D+7, (17)
O=-T'5+7, (18)

where 7j; and are 77, supposed by Gaussian white noises and T =71, is a

diagonal matrix of time constants. In this case, the constant 7 which has been set
to 100 s. The bias vector o will be estimated online, using the observer presented
in the following section.

2) Accelerometers: Since the 3-axis accelerometer is fixed to the body, the
measurements are expressed in the body frame B. Thus, the accelerometer output
can be written as:

b, =C(a)(a—§)+7, (19)

where g=[0 0 g]T and deR® are the gravity vector and the inertial
accelerations of the body respectively. Both are expressed in frame N. g = 9:81
m/sec2 denotes the gravitational constant and 77, € R® is the vector of noises that
are supposed to be white Gaussian.

3) Magnetometers: The magnetic field vector ﬁM is expressed in the N frame it is

supposed to be h,, =[hy 0 h, ]T . Since the measurements take place in the

Mx

body frame B, they are given by:
by =C(@)h, +7iy (20)

where 7, eR* denotes the perturbing magnetic field. This perturbation vector is
supposed to be modeled by Gaussian white noises.
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5. Non Linear Attitude Observer

The attitude nonlinear observer that includes the bias and the error update is given
by:

d:%a(@)[@s ~B+KE] (21)

5=-T%-K,z. (22)

where T has been defined in (18) and Ki; i = 1; 2 are positive constant parameters
q is the prediction of the attitude at time t. It this obtained via the integration of
the kinematics equation (14) using the measured angular velocity C?)G, the bias
estimate 3and ¢ =0, which is the vector part of the quaternion error ge.

Remember that ge measures the discrepancy between Y and the pseudo measured
attitude gps (17). In this chapter, gps is obtained thanks to an appropriate treatment
of the accelerometer and magnetometer measurements and it will be explained in
the next section.

Combining (17), (18), (21) and (22) the error model is expressed as:

o 1{0 7' Geo -
qe_Z(—f 207 +[7*]](qu “

O=-T0+K,& (24)
where ¥ =5+K,& and O =0 —{.The system (22)-(23) admits two equilibrium

points (q,, =1, §,=0,0=0) and (q,,=-1, §,=0,0=0). This is due to fact
that quaternions g and -q represent the same attitude. From (1), one obtains:

0o =1= =0

0eo =—1= S =27 (generally 2nr)
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that is, there is only one equilibrium point in the physical 3D space.
We can observe that the global asymptotically convergence of the error to

Zero (qeozl,qe:0,5=0) and consequently the convergence of Gto the real g is
given by:

fis =1, =0 4 =0 (25)

where q is the “true” attitude quaternion of the rigid body. Thus, the convergence
is guaranteed if and only if:

0| 1 G, >0, 5=0-5—0 (26)

Theorem 1. Consider the equilibrium states of the system (21)-(22) and let 4, be
the measured angular velocity. Then, the equilibrium point (g, =1,d, =0,6=0) is
globally asymptotically stable.

Proof. Consider the candidate Lyapunov function V which is positive definite,
radially unbounded and which belongs to the class C?:

V=K, ((t-a0) +a0 )+ 250 (27)
The derivative of (27), together with (23) and (24), is given by (28):

V o= —2K,G,, +0' D
—K,77G, +0" (-T5+K,é) (28)

—K, (0" +K&")q, —0'T "0+ K,0'&
=T ~

Since £ =0, and 0'q, =G0, it comes that:

V =-K,Kqld,-o'T'5<0 (29)

Complimentary Contributor Copy



A Quaternion Approach in the Estimation of the Attitude ... 99

6. Computation of the Attitude’s Estimation
and Prediction

The attitude estimator uses quaternion representation. Two approaches are jointly
used, namely an estimation with a constraint least-square minimization technique
and a prediction of the estate at the instant k. The prediction is performed in order
to produce an estimate of the accelerations and the attitude quaternion.

Actually, this latter problem is divided in three steps. First, the body
accelerations are estimated from the previously computed quaternion. Then, the
influence of the body accelerations is predicted from the accelerometer
measurements together with the magnetometer measurements, a measure estate is
estimated via an optimization technique. In this way, the quaternion that is
obtained by the estimation with a constraint least-square is insensitive to the body
accelerations. Thus, no assumptions of the weakness (or not) of the accelerations
are done, and no switching procedure from one model to another one is necessary.
Therefore, the main advantage of the approach presented in this chapter compared
to others approaches, is that the estimated attitude remains valid even in the
presence of high accelerations over long time periods.

In this chapter, a critter that takes in account the evolution of the attitude state
via determination of x = [q,, 41, G2, 43, ax, a,]" in the function f(x) is proposed.
The minimum error is chosen, but it takes in account the prediction of the state X
and the coefficients of weight for the state u and the measures estimated
(MesEstimated = MS) at the instant k.

f(x) = %[u (z;;l(MesEstimated - vmes(j))z) +1% - x||§] (30)

with qgTg —1 = 0.
The process of Estimation and Prediction needs the determination of his
gradient; this one is obtained by equation (24)

Hy = [57 Gese)]

H, = [2L2e]' (31)

q aq? ox

Similarly, the gradient of the state for the case of acceleration is obtained.

Finally, the total Gradient is obtained by the fusion between the calculation
show for the quaternion case and the gradient omitted for the acceleration case.
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anﬂ
0gq 0@

ox 1a

F(x) = (32)

For the prediction’s process of %, several tehcnique have been validated, for
purpose of simplicity, the prediction via spline is chosen. Cubic spline is a spline
constructed of piecewise third-order polynomials which pass through a set of n
control points.

Suppose we are n+1 data points (X, MS,) such that.

a= xy<..<x, Then the coefficients of the wvector u exists cubic
polynomials with coefficients y; ;0 < i < 3 such that the following hold.

u@® = @ = T3 [2-x]'ve € [2— x,]0< k <n—1
u(xj)= Ve 0 <k <n-1
1i(x41) = wje1(je1) 0SSk <n—2
wi(xis1) = Hjea(x41) 0<k <n-—2
1 (%41) = Ufa(x41) 0<k<n-2
So we see that the cubic spline not only interpolates the data (x;, MS;) but
matches the first and second derivatives at the knots. Notice, from the above

definition, one is free to specify constrains on the endpoints. The end point
constrain u"(a) = 0 u"(b) = 0 is chosen.

7. Results

In this section, some simulation and results of the articulated arm (Figure 4) are
represented in order to show the performance of the proposed control laws via
quaternion. A rigid body with low momentum of inertia is taken as the
experimental system. In fact, the low momentum of inertia makes the system
vulnerable to high angular accelerations which prove the importance to apply the
control.
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Figure 5. Estimation and prediction of the quaternion for the end effector.
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The proposed technique is compared to the existing methods (namely, the
MEKF (multiplicative extended Kalman filter) [10], (Control Force) [7] and the
AEKEF (additive Kalman filter) [11].

Initial conditions are set to extreme error values in order to assess the
effectiveness of attitude estimation. These results are depicted in Figures 5 and 6.
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Figure 6. Estimation and prediction of the acceleration of the end effector.

The proposed method performances are similar to those of the Extended
Kalman Filter (Multiplicative and Additive). However, for example errors the
convergence rate for our estimation-prediction is higher (As can be appreciated in
Figure 7, the estimation has been made in a PC with 2GB in RAM, Intel®, Core™
Duo CPU T6400 @2.00Ghz 2.00GhZz).

7.1. Experimental Results
A Commercial Micro AHRS (Attitude and Heading Reference System) [12,13] is

used to acquire the data instead of the MEMS sensor presented in section Il
((Robot showed in virtual reality Figure 3) and prototype in Figure 3. This AHRS
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also provides the Euler angles. The methodology of estimation and prediction are
implemented in real-time using the LabView environment.

Profile Summary
Generated 28-Feb-2014 12:19:25 using cpu time.

Eunction Name Calls Total Time Self Time* Total Time Plot
(dark band = self time)

Prueba_tiempo 1 0835s 0475s [
QRQ 1001 | 0294 s 0.182s [
Qpro A5005‘0.0583 ‘0.0588 .l
Qrot 6006 0.054s 0.054s o
axis 1 0.028s 0.025s I
xiabel l 2 . 0011s .0.0088 I
view 1 0.008 s 0.002s |
zlabel 2 0.008 s 0.008 s |

grid 1 |000ss  0005s .I
view>ViewCore 1 0.005s 0.005s I
yiabel 2 | 0005s 0005s ||
axescheck . 6 . 0.003s . 0.003s .
axis>L ocSetLimits | 1 0.002s 0.002s
axis>allAxes 1 0.001s 0.001s
viewsisAxesHandle 1 | 0001s | 0001s

deg2rad 2 0.001s 0.001s

Self time is the time spent in a function excluding the time spent in its child functions. Self
time also includes overhead resulting from the process of profiling.

Figure 7. Estimation time Profile Summary.

Remember that the attitude estimate is computed using a unit quaternion
formulation. For comparison purpose, the estimate quaternion is converted into
the rotation matrix. As can be shown, after large angular velocity change over a
long period, the AHRS has a low convergence rate (approx. 1 min, Figure 8)
compared to the one archived with our proposed methodology, onother advantage
is that the problem of the “gimbal lock” is avoided (Figure 9 and Figure 10).
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— 3DM-GX1
— Estimated |-+

Roll (deg)

Pitch (deg)

Time(sec)

Yaw (deg)

time(sec)

Figure 8. Experimental data.

On the other hand, this system doesn’t provide the acceleration of the body so
for validation we have done slowly movement and abrupt movement to appreciate
the effect of the acceleration in our method.

Conclusion

The first key to keep in mind from this chapter is that hybrid methodogyes of
attitude estimation via queternion, constitutes a viable alternative for improving
the overall performance and robustness of embedded attitude estimation systems
dealing with faulty sensor measurements.

By modeling the sensor fusion problem via queternion within the hybrid
systems framework, we are able to exploit the redundancy of information
emerging from the different sensors in order to perform real-time diagnosis of
their modes of operation, therefore allowing the attitude estimation system to
compensate for both methodogies and unmodeled faulty behavior.
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Figure 9. Attitude measured from the first articulation.
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Figure 10. Attitude measured from the end effect.
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This chapter presents a new strategy for attitude estimation of possibly non-
symmetric rigid bodies. Two globally methods of calculation of the body’s
attitude are proposed, namely one methodology fussing data information with a
three-axis accelerometer, three magnetometer and three rate gyros mounted
orthogonally jointly, with prediction of the movement via cubic splines are
studied and simulated. Furthermore, the attitude estimation is independent of the
body’s inertia. The numerical simulations have shown the effectiveness of the
proposed methodologies and their robustness with respect to sensors noise and far
initial points. Moreover, their simplicity makes them suitable for embedded
implementation. This control estimation is tested in real application, consisting in
a set of ABB 6 Degrees of Freedom robot mounted in the laboratory’s Motor.
This later is located in the laboratory: “Departamento de Pruebas de Motores”
Volkswagen México.
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Chapter 5

2D HERMITE-GAUSSIAN AND
GAUSS-LAGUERRE CIRCULAR HARMONIC
EIGENFUNCTION OF THE QUATERNION
AND REDUCED BIQUATERNION
FOURIER TRANSFORM

Soo-Chang Pei* and Yu-Zhe Hsiao

Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, Taiwan

Abstract

The quaternions, reduced biquaternions (RBs) and their respective Fourier
transformations, i.e., discrete quaternion Fourier transform (DQFT) and discrete
reduced biquaternion Fourier transform (DRBQFT), are very useful for multi-
dimensional signal processing and analysis. In this paper, the basic concepts of
quaternion and RB algebra are reviewed, and we introduce the two dimensional
Hermite-Gaussian functions (2D-HGF) as the eigenfunction of DQFT/DRBQFT,
and the eigenvalues of 2D-HGF for three types of DQFT and two types of
DRBQFT. After that, the relation between 2D-HGF and Gauss-Laguerre circular
harmonic function (GLCHF) is given. From the aforementioned relation and
some derivations, the GLCHF can be proved as the eigenfunction of

* Corresponding author: E-mail: pei@cc.ee.ntu.edu.tw, d99942011@ntu.edu.tw; Address: Graduate
Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan R.O.C.
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DQFT/DRBQFT and its eigenvalues are summarized. These GLCHFs can be
used as the basis to perform color image expansion. The expansion coefficients
can be used to reconstruct the original color image and as a rotation invariant
feature. The GLCHFs can also be applied to color matching applications.

1. Introduction

Properties of eigenvalues and eigenfunctions for Fourier transform and its variants
are widely surveyed in the literatures. In 1982, Dickinson and Steiglitz [1]
proposed a matrix which commutes with discrete Fourier transform (DFT) matrix
and used this commuting matrix to compute orthonormal eigenfunctions for DFT.
In the same year as [1], Grunbaum [2] discussed the Hermite function as
eigenfunction of DFT. Later in 2006, Pei et al. [3] proposed a nearly tridiagonal
commuting matrix to obtain orthonormal eigenfunctions for DFT with smaller
error than [1]. In 2008, Santhanam et al. [4] inspired by the ideas from quantum
mechanics in finite dimensions and presented an approach which computes
commuting matrix whose eigenvalue spectrum is closely approximated to that of
the Hermite-Gaussian differential operator. Recently in 2010, Pei et al. [5] derived
the eigenvalues of discrete 2D-HGF for two-side DQFT [6] and two-side
DRBQFT [7].

The quaternions have been applied to many research fields such as computer
science, mathematics, signal processing and image processing, since Hamilton
introduced the concept in 1843 [8]. The fundamental theorems are well developed,
and mathematical operations like Fourier transform, wavelet transform, convolution
of this four-dimensional, non-commutative algebra have been constructed maturely
[9-16]. The usefulness and effectiveness of quaternions in dealing with multi-
dimensional computations are demonstrated, especially those involving operations
of computer graphics and image processing, like three-dimensional rotations and
many other geometrical transformations. However, there are many other interesting
variants of quaternions like the biquaternions [17], the reduced biquaternions (RBs)
[18], and the quad-quaternions [19], which are very useful and possess special
properties and abilities that quaternions don’t have.

These variants have also found several applications. Among these variants, in
particular, we concentrate on discussing the quaternion, RBs and derive the
eigenvalues and eigenfunctions for their DQFT/DRBFT. The multiplication rule of
quaternions is non-commutative, on the other hand, the multiplication rule of RBs is
commutative. The commutative property is one of the advantages of RBs over
quaternions. Due to the commutativity of multiplications, many operations, such as
Fourier transform, correlation, convolution, singular value decomposition (SVD), of
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RB algebra are much simpler and more convenient to the users than the ones of
quaternion algebra. In [7], the efficient implementation of DRBQFT, convolution,
correlation, phase-only correlation and RB linear-time-invariant and symmetric
multichannel complex system are developed and they are much simpler than the
existing implementation of quaternions. The commutative property is important and
useful because the commutative DRBQFT is much simpler than non-commutative
DQFT. In [20], the SVD of RB matrices are introduced. Compared with the
quaternion matrix SVD, the complexity of the RB matrix SVD is reduced to a small
factor of one-fourth. From the above discoveries, we can tackle with many
arithmetic problems more efficiently in signal and image processing by using RBs.
The RBs also have their limitations. The algebra of RBs is not a division algebra,
and their geometric meaning is unfamiliar to most engineers. However, these
problems have almost no influence on signal and image processing applications. We
will briefly summarize the comparison of quaternions and RBs in the following
section. In this work, we derive the eigenvalues of 2D-HGF for three types of
DQFT and two types of DRBQFT, i.e., right-side, left-side and two-side for DQFT
and typel, type2 for DRBQFT. By applying the relation between 2D-HGF and
GLCHF mentioned in [21], we extended the conventional GLCHF in quaternion
and RB spaces. We found that the GLCHF is the eigenfunction of left-side and
right-side DQFT (type 1 and type2 DRBQFT), and the modified GLCHF is
eigenfunction of two-side DQFT (type 1 and type2 DRBQFT). Over all, the major
contribution of this paper are:

1) Three types of DQFT (right-side, left-side, and two-side) and two types
of DRBQFT (typel and type2) are introduced.

2) 2D Hermite-Gaussian and Gauss-Laguerre circular  harmonic
eigenfunctions and eigenvalues are derived for the above quaternion and
reduced biquaternion Fourier transforms.

3) Discrete 2D Gauss-Laguerre circular harmonic eigenfunctions can be
efficiently computed using the linear combination coefficients and 2D
discrete Hermite-Gaussian eigenfunctions. Both 2D eigenfunctions forms
a complete and orthonormal basis in the 2D plane.

4) DQFT and DRBQFT can be efficiently implemented using the
conventional 2D FFT.

5) Discrete 2D Gaussian-Laguerre circular harmonic functions are suitable
for circular pattern analysis and expansions of the color images.

6) Color image expansion, reconstruction, rotation invariant features, and
color shape matching are proposed and demonstrated using GLCHFs for
color image processing applications.
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This paper is organized as follows. In section 2, the background knowledge
and the fundamentals of the quaternions, RBs, 2D-HGF and GLCHF are briefly
reviewed. Three types of DQFT and two types of DRBQFT are introduced and the
eigenvalue derivation of 2D-HGF, GLCHF, and modified GLCHF for these
transformations are discussed in section 3.In section 4, we demonstrate the spatial
and spectral domain results of GLCHF and modified GLCHF to justify our
proposition of eigenvalues and derivations in section 2. The GLCHFs are also
used to perform color image expansion and color matching. Two reconstruction
methods are proposed for different purpose and apply these methods to
reconstruct color image. We also found that the expansion coefficients can also be
used as a rotation invariant feature. Section 5 concludes this work.

2. Preliminaries

2.1. Quaternions

The quaternions can be viewed as a four-dimensional vector space defined over
real numbers. The quaternions are also generalizations of complex numbers. A
quaternion consists of four components, i.e., one real part and three imaginary
parts. A quaternion is often represented as the following form:

q=qr+qii+qjj+qkk @
whered,,d;,q;, 0, are all real numbers, and the elements {1, 1, j, k} form
the basis of the quaternion vector space. The {1, i, j, K} obeys following

multiplication rules:
.2 .2 2 - - - - - - - -
I“=j"=k"=-1,ij=—ji=k, jk=—kj=i,ki=—ik = j 2
The conjugate of a quaternion is defined as:

q =0, —i—0;j—0ack 3)
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The norm of a quaternion can be written as:

o] =" = (07 + 07 + 07 + )" @

Table 1. Complexity of quaternions, RBs, RBs €, - €, form

in multiplication

Real multiplications Real additions
Qs direct calculation 16 12
RBs direct calculation 16 12
RBs ¢-¢,form 8 o

2.2. Reduced Biquaternions

The idea of reduced biquaternions (RBs) was suggested by Schtte and Wenzel [18]
in 1990. Other similar ideas can be found in the articles about bicomplex algebra
[22-24]. They [18] proposed to apply the RBs to the implementation of digital filter,
and demonstrated that fourth order real filter can be realized by means of a first
order RB filter. The RBs are another types of four-dimensional hypercomplex

numbers, and are also represented as the form of (1), but {1, i, j, K} obeys
different multiplication rules from those of (2). The rules are given by:

i2=k2=-1j2 =Lij = ji =k jk=Kj =i, ki =ik =—j 5)

As (5) shows, the major difference between RBs and quaternions is the
multiplication rules. If we define the norm of the RBs as

|q|=(qr2+qi2+qf+qk2)”2, then |0,0],| # |cy||a,| where @, and Qare two
arbitrary RB, and if we define the conjugate of the RBs as
q*=qr—qii—qjj—qkk, then 0Q  is still a RB. There are three different

definitions of conjugate for the RBs in [2, 3], but the product of a RB and one of
these three conjugates are still not real, therefore, we define the modulus and
conjugate of RB as follows:
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o =45 = (@} +0 +0f +af)* —4(q,9; +,6,)°)"* 20 (6)

where ¢ is the determinant of the matrix representation of the RBs (M q):

) g -~ O -0 g -0 q4; O

M, can be written as |, . g q | and 5=, - 4 o g o
a9 —% 4 -G B (PR PR M
G 9 O G G 9 9 9

= (o +0 +9’ +07)* —4(q,9; + 6 q,)> =0. If 5 =0, then the inverse of M and
q (RB) do not exist. The matrix representation is useful to analyze many
concepts of RBs like its inverse, addition, multiplication and norm, etc. We define

lo|=%/5 because |,0,|=|a/[a,| is satisfied and o] =(q7+q7)"* if
d; =0, =0 (compatible to complex numbers). The only property different from
that of complex numbers is the Schwartz triangle inequality, i.e.,
|q1 + q2| > |q1| +|q2| is not satisfied for some special cases. For example, two RB

numbers (1+ j)/2 and (1— j)/2 have zero norm, but the sum of them are
equal to one. The conjugate of the RBs can be represented as:

q =v5-q=|q/q )

The matrix representation of q* is \/g (Mq)’l, therefore, we can also write

down q* as:
d O 9| |% 9 g g g g g 9 9
L1 . . (8)
q=% =G O -—q|-ila; q -—a|+jla; -G -G|-kl|a; -a q.[}
g & 9| [% o G G 9; q G 9; G

The reason for choosing q*=\/g-q’l is that qq* is a real number,

qq” =|qf and (6,q,)" = ;0 If §=0, then the inverse of q (RB) and q do
not exist.
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Table 2. Comparison of quaternions and RBs

Property

Quaternions

Reduced Biquaternions

Commutativity

Non-commutative multiplica-

tion rules. (Therefore, the

arithmetic  operations  are

more complex than RBs.)

Commutative multiplication
rules. (Therefore, the
arithmetic  operations  are

simpler than quaternions.)

Complexity

The FT, SVD [20]-[21] are

more complicated than RBs.

The FT, SVD [20]-[21], are

simpler than quaternions.

Applicability

Popular in signal and image
processing areas, especially
in the

vision, and multi-dimensional

AETospace,

signal processing field.

computer

Less known but RBs can
perform almost same tasks as
quaternions do in signal and
areas

image  processing

because of their similarity.

Algebraic  property

geometric meaning

and

Division algebra and familiar

oeometric meaning.

Non-division algebra and un-
familiar geometric meaning.
but these have no influence
and

on  signal image

processing applications. [20].

2.3. ¢ -e, Form of RBs, Complexity Analysis and Comparison
of Quaternion and RB

In [25], Davenport had found that there exists two special nonzero numbers €,
ande, in HCA, suchthat ee, =0,¢/ =¢] " =..=¢ ,and €] =€) ' =...=¢,

. Therefore, €, and€, are both idempotent elements and divisors of zero. For

complex numbers and quaternions, the idempotent elements are only 0 and 1, and
the divisor of zero is only the number 0. For RBs, e =(1+j)/2,e,=(1-j)/2.

Any RB can be represented by the linear combination of €, ande,:
q=(q, +i)+(a; + Qi) =0, + 0y ] =018 +0, 48, ©)
where 0., =0, +0,,0,, =0, —d,. We name (9) the €, -€, form of RBs. This

form is the irreducible representation for RBs. The complexity of many operations
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about RBs, such as multiplication and Fourier transform, can be reduced by the
use of € ande,, and the analysis about RBs become easier. For example, the

multiplication of two RBs ¢}, and (], can be computed by following equation:

00, =00, = (qla + qlb)(qza + qzb)e1 + (qla _qlb)(an _qzb)ez (10)

We only need two instead of four complex multiplications to calculate the
multiplication of two RBs.
However, the real addition operations are increased from 12 to 16. The

complexity of multiplication for quaternions, RBs, and €, -€,form of RBs is

summarized in Table 1. The comparison of quaternions and RBs is shown in
Table 2 for readers to understand their main differences.

2.4. 2D Hermite-Gaussian Function and Gauss-Laguerre Circular
Harmonic Function

The 2D-HGF H,;, (m, n) form the complete orthonormal set in L, space. We can
define it as the following 1D separable form:

Hab(mln) = Ha(m)Hb(n)

1 m? (11)
J2talr

e 2h,(m)
where a=0,1,2,... and h,(m) are a-th order Hermite polynomials [26]. (m,n) is
spatial location in Cartesian coordinate. The GLCHFs can be linearly combinated
by using 2D-HGFs, that is:

Ha(m) =

Ly (m,n)=>"TOH,  (m,n) (12)
g=0

wheres > 0. Fort > s — t, and:
—g)!lg! [ min(g.m-t) s—t t
TO) — o (s—9)'g! _]) (13)
to = \} 2°(s—t)!t! k:max%g,t)( ) s—t—k )\t—g+k
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(13) are the coefficients of linear combination which can be written in a
matrix form (see the complex numbers in Figure 1) and the readers may refer to
[21] for detailed discussion about 2D-HGF and GLCHF. The relation between
2D-HGFs and GLCHFs is illustrated in Figure 1. For example, GLCHF L1
(i.e.,Lsg) can be written as a linear combination form using fifth order 2D-HGFs
as follows:

L1=L,,=Re{L,}+i-Im{L,,}= 0.1768- H,,-0.3953i- H,,-0.5590 - H.,
+0.5590i - H,,+0.3953- H,,-0.1768i - H,q

(14)

3. Eigenfunctions and Eigenvalues of DQFT and DRBQFT

3.1. The Definitions of DQFT and the Derivation of Their
Eigenvalues

We define three types of DQFT used to derive their eigenvalues as follows (only
foreword transforms are given):
Left-side DQFT (denote as L-DQFT):

1 MoANA o, um vy (15)
F, (uv)=—— e MNf(mon
o (U, V) N e (m,n)
Right-side DQFT (denote as R-DQFT):
1 2, (1T
For(u,v)=— f(m,n)e M N (16)
o \/MN m=0 n=0
Two-side DQFT (denote as T-DQFT):
1 88 om 23
For (U,V) =—— e Mf(mn)e N (17)
o MN m=0 n=0

where {u,, 1} are unit pure quaternions (real=0 and norm=1).
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HiO HU H32 HH HH HO‘S

Im
0.1768 0,395 0559 0.55%0i 03953 0.17681 . . L1 Ly,
0.3953 0.5303 0.2500 0.2500i 0.5303 0.3953i . . L2715
0550 0.2500i 0.353% 0.35%i 02500 0.55%0i - L3 L,
0.5590 025001 0.353%6 03536 02500 0.5550i - I4 L,
0.3953 0.5303i 0.2500 0.2500i 05303 03953 - . L5 L,
0.1763 0.3953i 0550 0.550i 03953 0.1768i - - L6 L,

Figure 1. Fifth order 2D-HGFs in top row can be transformed to the corresponding
GLCHFs in rightmost columns (L1 to L6, as shown in real and imaginary parts) by using
linear combination with the coefficients in matrix form.

3.1.1. Eigenvalue Derivation of 2D-HGF H ,;(m, n) for Left-Side QFT

For 2D-HGF H,;, (m,n) and the transformation axis u is unit pure quaternion:

M-IN-1 o, um

N XIRENCDES TS 1 WH, () Ze L) (18)

= (=) H (M)(=4)"Hy (n) = (=) Hy (m,n) = H,, (m, n)(—ﬂ)a+h

The eigenvalue of 1D-HGF for DFT is well-known and its (—u)%, where a is
the order of HGF and p is transform axis of DFT. Therefore, from the derivation
of (18), we know that the eigenvalue of 2D-HGF H,;,(m, n) for left-side QFT is

(.
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3.1.2. Eigenvalue Derivation of GLCHFL_;,(m, n) for Left-Side QFT

Take GLCHF L;, for example:

Lyo(m,n) = A* Hyg(m,n) + B x Hy;(m,n) + C x H;,(m,n) +
+D * Hys(m,n) =R+ pu =1,

where the transformation axis p are unit pure quaternion, (A,B,C,D) are the
coefficients of linear combination obtained from (13), the original imaginary axis
i in (13) is now extended to unit pure quaternion u, R is real part, | is imaginary
part (R and | are also linear combination of 2D-HGFs). Therefore,

. G (19)
= ()" R+ ()" " L
= ()™ (R 1) = ()™ Ly (1) = Ly (m, ) (—40)™

From (19), we know that the eigenvalue of GLCHFL,,(m,n) for left-side
QFTis (—p)®*?.

3.1.3. Eigenvalue Derivation of 2D-HGF H,;, (m, n) for Right-Side QFT

For 2D-HGF H,;, (m,n) and the transformation axis u is unit pure quaternion:

=z

1 um vn M-1 um
27u(—+— —

ﬁzé Ha, (e :J_MZO Ha(m)e_2 M %Z‘; Hb(n)e’z”"ﬁ 20)

Ho (M)(=4)" Hy (M)(—4)° = Hp (M, n)(=2)" = (—1)* H . (m, )

M

From (20), we know that the eigenvalue of 2D-HGF H,;, (i, n) for right-side
QFT is (—u)®*b.
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3.1.4. Eigenvalue Derivation of GLCHFL,;(m,n) for Right-Side QFT

1 EE (S 1 EE “2mu(S)
W Lab(m n)e M N =mz (R+,u|)e MoN
m=0 n=0 =0 n=0
M-1N-1 um vn M -1 N— um vn
- LSS Re e, 1 e G
MN m=0 n=0 MN m=0 n=0
M-1N-1 um_vn M-1N-1 um vn
1 R .e‘z”“(ﬁ*ﬁ) +#(L l.e 2mu( )) (21)
MN m=0 n=0 ’\I M m=0 n=0

+ul)(- u)a*b Lo (M, N)(=20)**® = (=) L, (M, )

From (21), we can see that the eigenvalue of GLCHFL,, (m,n) for right-side
QFTis (—u)“*P.

3.1.5. Eigenvalue Derivation of 2D-HGF H,;,(m, n) for Two-Side QFT

For 2D-HGF H,,(m,n) and two transformation axes p; and u, are unit pure
quaternions:

= um 2/42 M1 2/[;:1 2”/2
— e MH,(mn)e z MH,(m)—— ZH (me " (22)

= (=40)"Ha (MH, () (=4,)" = (~14)° (—#z) Ha (M, ﬂ)—Hab(m, n)( )" (~45)"

From (22), we realize that the eigenvalue of 2D-HGF H,;, (m,n) for two-side
QFT is (—u1)*(—u2)".

3.1.6. Eigenvalue Derivation of Modified GLCHFs L,,(m,n) - (4 + )
and (uq + H3) - Lyp(m, n) for Two-Side QFT

For two-side QFT we have to change the form of original GLCHF L., (m,n) in
order to obtain eigenvalues. The modified GLCHFs are defined as L, (m, n) -
(g + 1) and (uq + 1) * Lgp(m, n). Ly (m,n) can be written as R + y,1 or R +
U1, where y,and p, are unit pure quaternions and they are also transformation
axes, R and I are linear combinations of 2D-HGFs. We denote modified GLCHF
of first kind as MGLCHF I, and GLCHF of second kind as MGLCHF Il. Before
we proceed to find the eigenvalues of modified GLCHFs for two-side QFT, a
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simple theorem is introduced first and it may be helpful for us to derive the
eigenvalues.

Theorem 1. For any unit pure quaternions uand v, we have:
—w"u+v) = u+v)(=v" (23)
Proof. When n = 0, (23) is obviously true. Assume n = k, we have:
(—wk+v) = u+v)(-nF (24)
Then, (—wW**(u+v)=(CwW*(Wu+v) =Wk —uv) = (—w*-
(—uwv+1) = W U+ v)(-v) = @+ V(W (V) = @+ V) (=) by
(24)), where u? = v? = —1. Therefore, according to the mathematical induction,
the proof is completed. In what follows, we derive the eigenvalues of MGLCHFs

for two-side QFT:
For MGLCHF of first kind, L, (m,n) - (1 + u):

1 M ’2”/11ﬂ *Z”ME 1 v ’2”/‘1@ *2”}’2@
==& MLymnmtme N=—==3>>e MR+um)um+u)e "
MN 5o nmo MN o n5
1 MoAN L, um 2, 1 MoAN o um 2,
=—>>e M-Ry-e N+ e M.Ry-e N
MN 7% nso VMN i%n
1 MR *27’#1@ *Z”ﬂzm l M *2”/‘1% *2’7/12m
+ ZZE Mogl-e N+ Ze Mople N
VMN o n% NMN 505

= 1y (1) (1) R+ (= 14)* (=1,)° 1R+ (1) (= 15)° ) + gy (1) (—11,)" 1,
= Rty (—14)" (—1)° + ) 1ty (— 1) (~ 1) + R(=14)* (=1)° ty + 1) (1) (—1,)" 1
= (R+ ) (1 (—11)* (=1)° + (1) (- 11,)" 11,)
= (R+ 1) (=) (1t + 1) (—14,)° = (R4 1)ty + 11,) (—14,)* (—115)°
(o () (i + 1) = (1 + 11,)(=11,)* (Thm - 1))
= (R+ )t + 1) (= 11)*"*
= Loy (M, n) (4 + 1) (- 12,

(25)

)a+b

For MGLCHF of second kind, (g + ) - Lgp (m,n):
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1 MAN L, um 27, 1 MANT p,um 2,
—> e M (#ﬁﬂz)l-ab(m me N=—==3%e  V(g+um)R+mle N
MN m=0 n=0 MN m=0 n=0
1 I g, 271, % R 25
= e wR-e N4+ e M.uR-e N
MN Zozo JMN ozo ’
1 w3 erwﬂ 2y 1w 72%” 1ty
+ e 7y Y- N+ e TN TA Y- N
JMN zozo ’ JMN = ozo “e

= (=) (=1)° R+ 1 (~ 1) (~1,)° 1, + (— 1) (~1,)° 1, R+ (= 11)* (—uz) Hatty|

= (1 (1) (—18,)° + (1) (=1)° 11, ) (R + g1, 1) (26)
= (—10)* (1 + 1) (~11,)" (R+ 1) = (=) (= 14)" (1t + 1) (R + p1,1)

(- ()" (e + 1) = (e + 1) (=41,)" (Thm - 1))

= ()" (1 + 1) R+ 1)

= (=) (4 + 1) Ly (M, 1)

From (25), we know that the eigenvalue of MGLCHF of first kind,
Lap(m,n) - (uq + uy) for two-side QFT is (—u,)%™2. On the other hand, from
(26), we can see that the eigenvalue of MGLCHF of second kind, (uq + ;) -
Lgp (m,n) for two-side QFT is (—p;)%*P.

3.2. The Definitions of DRBQFT and the Derivation of Their
Eigenvalues

We define two types of DRBQFT used to derive their eigenvalues as follows
(only foreword transforms are given):
DRBFT of type 1 (denote as DRBFT I, two imaginary unit axis,u? = u? =
-1):
l M-1N-1

Frel (P, S) N f(m,n)efzﬁ(u1 reN) (27)
m=0 n=0

DRBFT of type 2 (denote as DRBFT Il, one imaginary unit axis,u? = —1):

1 %3 2muy (F8+30)
Fes, (P, S) = 2 " f(m,n)e (28)

<
z
N

I
o
1l
o

n
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3.2.1. Eigenvalue Derivation of 2D-HGF H ,;,(m, n)for DRBQFT of Type 1
For 2D-HGF H,;,(m,n) and two imaginary unit axes, u? = u3 = —1:

M =

N

N-1

[N

Zzz(ul +u2 )

Hab(mv )

<

Y N m=0 n=0
M-1 erul pm l N-1

1 M Z”UZ%
T & Ha(me T2 (e
H, (m)(-u,)*H, (n)(= Uz)° H (M, n)(-u,)* (<u,)° = (=u,)*(—u,)" H . (M, n)

(29)

From (29), we see that the eigenvalue of 2D-HGF H;, (m, n) for DRBQFT of
type 1is (—uy)*(—uy)P.

3.2.2. Eigenvalue Derivation of 2D-HGF H ,;(m, n)for DRBQFT of Type 2

For 2D-HGF H,j, (m, n) andone imaginary unit axis, u? = —1:

M-1N-1 o, m+ﬂ
L > > Hy(m,ne 2y )
MN m=0 n=0
1w 2”“1 pm 20, (30)
= — H M H N
2 a( z »(n)e

=H,(m)(-u,)*H b(n)(—ul)b = ah(m,n)(—ul)“b = (~uy)*" H,,(m,n)

From (30), we see that the eigenvalue of 2D-HGF H,;, (m, n) for DRBQFT of
type 1is (—u,)**P.

3.2.3. Eigenvalue Derivation of GLCHFL,;,(m,n) for DRBQFT of Type 1
L, (m,n)=H,(m,n)+u-H,(mn)=HE (m,n)+u-H} (m,n)

where u € {i, ], k}.
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§

-1N-1

1 er(u1 +u27)
§)=—= L, (m,n)e
RBl(p \/szo — b
ZN ) er(u1 +u2 0y U 1 M’lN’lH (m n)e—er(ul%wz%n)
m nj)e +U- ,
MN m=0 n=0 VMN m=0 n=0 z (31)
= (=Uy)* (=U,)" Hy (M, n) +u - (-u,)*(=u,)" H,(m, n)

= (=U,)*(=U,)" (H,(m,n) +u-H, (m,n))
= (=U,)*(=U,)" (H 5, (M, n) +u- Hy, (m, n))
= (_u1)a (_uz)b Lab (m- n)

Thus, eigenvalue of GLCHFL,, (m,n) for RBQFT of type 1 is (u? = u3 = —1):
b
(_ul)a(_uz) .

3.2.4. Eigenvalue Derivation of GLCHFL,;(m,n) for DRBQFT of Type 2

1 MoNd _27u, (P, STy
L (p,S) =— La (m‘n)e
Rez MN m=0 n=0 °
M-1N-1 20y (P3N 1  MoIN —27u, (P, 30y
Hymome % N pu-—— Hy(mn)e " N
MN mz()nz(; MN m=0 n=0 2

= DFTul(Hl(m,n))+u DFTU1(H2(m,n))
= (=u,)**H, (m,n) +u-(=u,)*"H,(m,n)
= (~u)**(H,(m,n) +u-H,(m,n))

= (=Uu)*™* (HE (m,n)+u-H (m,n))

= ()" Ly (m, n)

(32)

Thus, eigenvalue of GLCHFL,, (m,n) for DRBQFT of type 2 is (u? = —1):

(_ul)a+b .

As mentioned in sec. 2.3, the complexity of DRBQFT implementation can be

reduced by using €; - €, form of RB. Take DRBQFT of type 1 for example, we
demonstrate the procedure as follows:
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Assume:
. . 1+] 1-j
u,=i,u, =k,u= J,elz—J,e 2=—J
2 2
o P, 51 SN, -2 BT . sn, -2z B0
‘MOUUNT —cos(272)e M 4u-(-u,)-sin2z>—)e M
N N (33)
—27u, (P4 5Ty —27u, (P50
— M N M N
. ) e .e2

Table 3. Summarization of eigenvalues of 2D-HGF, GLCHF,
and MGLCHF I&II for three types of DQFT and two types of DRBQFT.
({u, uq, n2} € unit purequaternions. {u,u,, Uy, u3} € RBs and u? = u? =

u% = u% = —1, {a,b} are orders of functions)

L-DQFT R-DQFT T-DQFT | DRBQFTI |DRBQFTII
2D-HGF (=gt (=0 | =) (=) | () () (—u )"
GLCHF (=)™ (—u)** NA (—1,) ()" (—u)**

MGLCHF 1 NA NA (=) | () (—u)*
MGLCHF 11 NA NA (=g, )" (=10, (—u,)" (—u)™

Loy (M, 1) = H, (M,n) + j-H,(m,n)

=H,,(mn)-e+H,_,(mn)-e, (349
where
H,.,(m,n) =H,(m,n)+H,(m,n)
H, ,(m,n) =H,(m,n)—H,(m,n) (35)
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1 M-1N-1 —27(u 2, 3y
Legs (P S) Ly(mne M N
MN m=0 n=0
5 Z (e ™ V) e (2SS H(mome V). %
(m,n)e -8+ m,n ‘e,
JMN ae POUMN 25

- th(p,s) €+ Hlfz(pv_s)'ez
H..,(p,s) = DFT, (H.,(m,n)),H, ,(p,s) = DFT, (H, ,(m,n))

Therefore, we can use conventional 2D DFT to implement complex
DRBQFT.

3.2.5. Eigenvalue Derivation of MGLCHFL_;,(m,n) - (uy + u3) for
Two-Side DRBQFT

Because the commutative multiplication rule in RB algebra, Ly, (m,n) - (u; +
u3)=(u; + u3) - Lyp (M, n). Therefore, the two MGLCHFs are equivalent.

Eigenvalue derivation of MGLCHFL;, (m, n) - (u; + uz) for DRBQFT of type 1:
First, we can obtain the following result:

Lab(m' n)'(ul +U3) = (Hl(ml n) +Uu, - Hz(m- n))(ul +u3)
=—H,(m,n)+H,(m,n)-u, + H,(m,n)-u, + H,(m,n)-u, (37)
= (=H,(m,n)+H,(m,n)-u;) +(H,(m,n) +H,(m,n)-u,)-u,
=H;(m,n)+H, (m,n)-u,

Then,
1 M-1N-1 27 (u Py, 3
S L, (m,n)-(u, +u,)e MW
Lre: (P, S) TN 22 (M, N) - (U +Uy)
M-1N-1 2,,(u1 +u3 ) 1 MANA 2720 +u37)
H.(m,n)e H_(m,n)e M
JVN %Z; r(mn) v 22 Ha (M) (38)
= (—U,)*(—U)°H (M, n) +u, - (~u,)* (u,)° Hy (m,n)

=(-u,)*(~u,)’ (H(m,n)+u,-H (m,n))
= (_ul)a(_us)b(Hl(m: n) +Uu - Hz(ml n))(ul + U3)
= (_ul)a(_u3)b Lab (m’ n) : (ul + U3)
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Table 4. Summarization of parameters and methods for generating
results in Figures 4-13

Case Function Order Axes Size Eigenvalue Method
1 Hao (a.by=(3,0) p=i 121x121 i L-DQFT
it] i+j
2 Hay (a,b)=(2,1) w=— 121x121 — R-DQFT
V2 V2
. fLiek
3 Hy wh=(12) | ="%E | 1215121 ik T-DQFT
+ V3
_ i+
H="g
4 Lao (a.by=(3,0) u=k 121x121 k L-DQFT
it] it
5 Lag (a,b)=(3,0) w=— 121x121 = R-DQFT
V2 V2
— i+
6 Lao(uy + 12) | (Ab=G3.0) | gy = ‘*\“—ﬁ”‘ 121x121 ‘EJ T-DQFT
N
_i+j
H2 =5
fjtk i+j+k
7 (w1 +u2)lag | @b=3.0) | py= ’*\fi“ 121x121 % T-DQFT
N
_ i+
H="g
8 Hys (a,b)=(0.3) uyp =k 121x121 k DRBQFT1
9 Lao(uy + uz) | (ab)=(3,0) wy =i 121x121 i DRBQFTII
uz =k

HSIZI H21 H1 2 HIZIS

Figure 2. Input 2D-HGFs {Hs,, H,1, H,, Hy3}, Size:121x121 pixels.
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L, real part Ly, imaginary part

Figure 3. Input GLCHF L, size:121x121 pixels.

Thus, eigenvalue of modified GLCHF L, (m, n) - (u, + u3z) for DRBQFT of
type 1 is

(-0)"(~u)"

Eigenvalue derivation of MGLCHFL,,;, (m,n) - (u; + u;) for DRBQFT of type 2:

1 MoINa (m E)
L S)=—x L, m,n~u+ue
re2 (P:S) IVN 24 »(M,N)- (U, +Uu;)
Mz,lN,l om u(pm+sn) 1 MoIN- 27u(PM 3Ny
=— H, (m,n)e +u,- H, (m, ne M N
JMN &< > JVN =& (39)

=(-U)*"H, (m,n)+u, - (-)*"H (m,n)
=(-u)*®(H,(m,n)+u,-H (m,n))
= (~u)*®(H,(m,n) +u, - H,(m,n))(u, +u,)

= (_U)a+b Lab (m' n) . (u1 + U3)
where
(u, =u1'us’ul2 =u32 =-1u* =-1)

Thus, eigenvalue of modified GLCHF L., (m, n) - (u, + u3z) for DRBQFT of

a+h
type 2 is (-u) . Before we leave this section, the above results are briefly
summarized in Table 3.
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4. Experimental Results

4.1. Verification of Derived Eigenvalue

First, we use Matlab, QTFM toolbox [27] developed by Sangwine et al. and our
reduced biquaternion toolbox to perform DQFT and DRBQFT for 2D-HGF,
GLCHF, MGLCHF | and MGLCHEF II. The transformed spectrums of functions
mentioned above and the ratio of spectrum to original function multiplied by
derived eigenvalue, i.e., 1, will be demonstrated to verify the results summarized
in Table 3. For QFT, we verify all cases in Table 3. Because of the page limit, we
only verify 2D-HGF for DRBQFT II, and MGLCHF 1&Il for DRBQFT I. The
parameters and methods used in these experiments are summarized in Table 4 and
the experimental results are shown in Figure 4~13.

Case 1 to 3. 2D-HGF/L-DQFT, 2D-HGF/R-DQFT, 2D-HGF/T-DQFT

We can see from Figure 4 to 6 that the transformed spectrum L-DQFT(Hs,) is
equivalent to original function multiplied by derived eigenvalue (—p)3*° = Hyy,
R-DQFT(H,,) is equivalent to H,; = (—u)?*1, and T-DQFT(H,,) is equivalent to
Hyp * (=)' (= u2)?.

Case 4 to 7. GLCHF/L-DQFT, GLCHF/R-DQFT, MGLCHF I/T-DQFT,
MGLCHF II/T-DQFT

It can be seen from Figure 7 to 10 that L-DQFT(Ls,) is equivalent to
(—1)3%0 x Ly, R-DQFT(Ls,) is equivalent to Lyq * (—p)3%°, T-DQFT (L3 (1y +
12)) is equivalent t0 Lgo(uy + pa) * (— 42)>*°. T-DQFT((uy + 2)L30) s
equivalent to (— u1)3%% * Ly (uy + 1p).

Case 810 9. 2D-HGF/DRBQFT Il, MGLCHF I&I11/DRBQFT I

As depicted by Figure 11 and 12, DRBQFT | (Hys) is equivalent to Hys *
(—u)°*3, DRBQFT | (Lso(us +u3)) is equivalent to  Lgg*
(— uy)3(— u3)°.Besides, Figure 13 demonstrate that ratio of spectrum to function
multiplied by eigenvalue is equal to one (only middle part is shown). The phase
errors shown in the border of Figure 4(b) to 12 (b) are due to finite-length effect
of DQFT and DRBQFT and limited computational precision of Matlab.
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(c) Original*eigenvalue (Phase)

Figure 4. (—u)3%° * HyandL-DQFT(Hj,).

(a) Original*eigenvalue (Mag.)  (b) DQFT (Mag.)
= YW

T

(c) Original*eigenvalue (Phase)  (d) DQFT (Phase)

Figure 5. Hy; * (—u)?*andR-DQFT(H,,).
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(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.)

(c) Original*eigenvalue (Phase) (d) DQFT (Phase)

Figure 6. Hy, * (— uy)*(— py)? and T-DQFT(H,,).

€] Orlglnal*el envalue (Mag.)(b) DQFT (Mag. )

(c) Orlglnal*elgenvalue (Phase)(d) DQFT (Phase)

Figure 7. (—p)3*° = L3, andL-DQFT(Ls,).
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(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.)
I — S— Z e o
X

——

P e o
(c) Original*eigenvalue (Phase)  (d) DQFT (Phase)

Figure 8. Lyq * (—u)3*? and R-DQFT(L3).

(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.)

(c) Original*eigenvalue (Phase)  (d) DQFT (Phase)
Figure 9. L3y (g + ) * (— p2)**% and T-DQFT(L3o (11 + 112)).
4.2. Color Image Expansion and Partial Reconstruction Using
GLCHFs

From the above experiments and discussions, we know that GLCHFs are the
eigenfunctions of DQFT and DRBQFT. Therefore, GLCHFs possess some useful
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properties, such as shape invariance under DQFT and DRBQFT. We can
represent GLCHFs as a 2D quaternion or 2D RB functions and use them as basis
to expand quaternion encoded color images I, (m, n), or RB encoded color images
Izg (M, n), i.e.,

Io(m,n)=i-R(m,n)+ j-G(m,n)+k-B(m,n)

_zzh —tt sn(m n) (40)

s=0 t=0

log (Mn) =i"“R(m,n)+ j~G(m,n)+k"B(m,n)

‘ZhRB L (m,n)
5=0 t=0

where R(m, n) is the red color channel, G(m,n) is the green color channel, and
B(m, n) is the blue color channel of the color image, respectively. {i, j, k} is the
quaternion basis introduced in (2) and {i’,j’, k'} is the RB basis mentioned in
(5). hf_t,t is the Gauss-Laguerre circular harmonic (GL-CH) expansion
coefficient of order (s-t,t) for quaternion encoded color image and L2_ ¢e(Myn) is
quaternion encoded 2D GLCHF basis of order (s-t,t). On the other hand, hZ2, , is
the GL-CH expansion coefficient of order (s-t,t) for RB encoded color image and
LR, .(m,n) is RB encoded 2D GLCHF basis of order (s-t,t). For convenience, the
representation of order (s-t,t) is replaced with (a,b). From (40), we see that
quaternion/RB encoded color images can be expanded by using infinite number of
expansion coefficients and GLCHFs. However, only some of the expansion
coefficients and GLCHFs is useful and meaningful for image reconstruction task,
only part of these coefficients and GLCHFs are retained and applied to partially
reconstruct the original color image. As illustrated in Figurel4, the square
represents the domain of expansion coefficients h® ap OT h2%, and the shaded area
is the coefficients that will be used. Two parameters K and L can be determined to
do sifting of coefficients in the domain and define the shape of shaded area. In
what follows, we perform several experiments to test the efficiency of partial
reconstruction. The test color images are N by N pixels, where N is set to 64. Two
methods are proposed to sift expansion coefficients of interests as follows:

Method 1.
For a fixed K, we increase L from zero to a predefined number (the increment
step d can be verified). The sum of order (a+b) satisfy the following constraint,

(a+b) =L<2N+2 (41)
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and the absolute difference |a — b| satisfy another constraint,
la—b| <N <K (42)

From Figure 15, the partially reconstructed color images by using the sifted
expansion coefficients hg_b or hZ% with method 1reveal the details of image
circularly and gradually. We cannot recognize the content of original image well
when the order (a + b = L) is low, but when the order (a + b = L) is high, e.g., L
=100 ~ 130, we only use finite, small number of coefficients and GL-CH basis to
approximate original images. It can be seen that the approximated images are
visually pleasing with high fidelity.

Method 2.

For a fixed L, increasing K from zero to a predefined number (41) and (42)
are also satisfied. From Figure 16, the partially reconstructed color images by
using the sifted expansion coefficients hS’b or h&% with method 2 approximate
the support of the original image. We can recognize the content and support size
of original image even when the order (K) is low. As for K is high, the
approximations are slightly inferior to those of L is high, especially in the border
of the reconstructed images. This is because the main purpose of method 2 is to
obtain the support and roughly sketch of original images.

(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.)

I=E

Figure 10. (— p1)3*° * (y + pz)L3o and T-DQFT((uy + ) L30).
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(a) Original*eigenvalue (Mag.) (b) DRBQFT (Mag.)

e

(c) Original*eigenvalue (Phase) (d) DRBQFT (Phase)

Figure 11. Hy; * (— u,)°*3 and DRBQFT Il (Hys).

(a) Original*eigenvalue (Mag.)

(c) Original*eigenvalue (Phase) (d) DRBQFT (Phase)

Figure 12. L3o(u; + uz) * (— uy)3(— u3)® and DRBQFT I (Lo (uy + u3)).

Complimentary Contributor Copy



136 So00-Chang Pei and Yu-Zhe Hsiao

4.3. Expansion Coefficients h?, and h2% as Rotation Invariant
Features

Eg. (40) is the image expansion by using GLCHFs, it can be represented as a
matrix form:

lo = Lohg (43)

Ire = Lre hRB

where I, is a quaternion matrix and Irp is a RB matrix formed by original color
image. L is quaternion encoded GLCHF basis matrix and Lgg is RB encoded
GLCHF basis matrix. hy, is quaternion encoded coefficient matrix and hgg is RB
encoded coefficient matrix. We multiply inverse matrix of L2 or LR to the left-
side of 19 or I®B in order to obtain expansion coefficients. That is:

Lolo =hg (44)

L gy = heg

RBRB —

EH v <121x121 double>

41 42 43 44
40 1.0000 1.0000 1.0000 1.0000
41 1.0000 1.0000 1.0000 1.0000
42 1.0000 1.0000 1.0000 1.0000
43 1.0000 1.0000 1.0000 1.0000
44 1.0000 1.0000 1.0000 1.0000
45 1.0000 1.0000 1.0000 1.0000
46 1.0000 1.0000 1.0000 1.0000
47 1.0000 1.0000 1.0000 1.0000
48 1.0000 1.0000 1.0000 1.0000
49 1.0000 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000
51 1.0000 1.0000 1.0000 1.0000
52 1.0000 1.0000 1.0000 1.0000

Figure 13. Eigenvalue verification of Figure 4~12. The transformed spectrums of functions
and the ratio of spectrum to original function multiplied by derived eigenvalue is 1.

Eq. (44) is Laguerre Gauss transform (LGT) of quaternion/RB encoded color
images. hg_b and hR3 are LGT coefficients. Figure 17 and Table 5 demonstrate

that hgyb possess rotation invariant property, because the mean squared errors
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of hg (LGT coefficients of original color image) and hg (LGT coefficients of
rotated color image) are very small under different rotation angles
(the experiment of A% is not shown here due to page limit).

e order a

order b

K

Figure 14. The illustration of partial GL-CH coefficients used to reconstruct color image.

Table 5. Mean squared error of hg and hg under different rotation angles

Ang.| 15 30 45 60 75 90 105 | 120 | 135 | 150 | 165 | 180

MSE |0.0077|0.0062|0.0058 {0.0061|0.0068 Qgge- 0.0077|0.0062|0.0058 | 0.0061 |0.0068 7.1312e-

S . . -

e -
. P

a+b=8~11’d:1

a+b=20~50,d=10. ) )
- _—
r =~ N >
b=60~90,d=10 i\? ‘\}
a+b=60~90,d= ) ! /)
\ \’ ! /
v e . b f

a+b=100~130,d=10.

Figure 15. Continued on next page.
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a+b=0~3’d:1‘ . . - -
e - -

2.5
| asb=20-504=10. | ) ©
| asb=s0~90-10. ] A

Figure 15. (a) Partially reconstructed quaternion encoded color image (Lena) by using hQ
((a,b) satisfies (41) and (42)) and L® op(M;n) with method 1. (b) Partially reconstructed RB

encoded color image (Baboon) by using hZ% and L5 (m,n) with method 1. d is the
increment for L=a+b=0~130,K=65>N.

-
/
K=4~7 | s | :
4 /’ 2 ) )
|
a

Figure 16. Continued on next page.
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=
‘IL
X
A
et
o‘/
o~
. |
"~
e |

K=8~11

"‘\u. \
.
=

K=12~15.

K=16~19

K=20~23.

s

b

Figure 16. (a) Partially reconstructed quaternion encoded color image (Lena) by using hg,,,
((a,b) satisfies (41) and (42)) and L‘ib(m,n) with method 2. (b) Partially reconstructed RB
encoded color image (Peppers) by using h%% and LE% (m,n) with method 2. |a —
b| <K=0~23, L=2N+2=130.

4.4. Color Shape Matching by Using GLCHFs

In section 4.2, we proposed a method for color image decomposition. In this
section, we further use the decomposition and quaternions/RBs algebra and
propose novel color shape matching algorithm for jersey. We briefly summarize
our color shape matching algorithms as follows and demonstrate some
experimental results to verify our method by using GLCHFs and RBs. The test
input images are depicted as follows (Figures 18-21).
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angle: 15 degree. counterclockwise. Interpolation method: bilinear Rotation angle: 105 degree, counterclockwise. Interpolation method: bilinear
, ) Lo posng P an 196 e
u ot o
(a) (b) (m) ()
Rul uign muk ‘l)d;nru counterclockwise. Interpolation method: bilinear Rotation angle: 120 degree, counterclockwise. Interpolation method: bilinear
- S D by Loaposng Pawog w10 gee
. | | . . 1 ’M”MMM 5
(c) (d) (0) (p)
Rotation angle:45 degree. counterclockwise. Interpolation method: bilinear Rot llion angle: 135 degree, counterclockwise. Interpolation method: bilinear
. - o s L5 o
. 6T o Lorogoding LGT e Bt L
q)

(e) (f)
Rotation angle: 150 degree, counterclockwise. Inte n\uluuun method: bilinear

Rotid L 10 dome
n | W“ 1
)

Rot uinn angle: 165 degree. counterclockwise. Interpolation method: bilinear

Rot niun angle:60 degree. counterclockwise. Interpolation method: bilinear

Rt Lons 0 g
. | [ |

(2) (h)

[

Rotation angle:75 degree, counterclockwise. Interpolation method: bilinear

Lo prsang Detres Lom 76 dogree

Ao Lo 15
Lo LGT cool #Retied L
. . . . . HLK“HM“J f
(1) () (v)

Figure 17. (a)(c)(e)(g)(i)(K)(m)(0)(q)(s)(u)(w) Original Lena color images with zero
padding and their rotated versions with different angles. (b)(d)(f)(h)G)(1)(N)(P)(NE)(V)(X)
Left: LGT coefficients hJof original Lena color images with zero padding. Middle: LGT
coefficients hfof rotated Lena color images with different angles. Right: The difference
between hgand h%, i.e., |h§ — hg|. The white pixels in these figures are coefficients and
differences with significant values.
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Figure 19. Input image 2 for color matching.

Figure 20. Input image 3 for color matching.
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Figure 21. Input image 4 for color matching.

Figure 22. Color patches that can be used to do color shape matching (Clipped From jersey
in Figure 18-21).

4.4.1. Color Shape Matching Algorithm by Using GLCHFs and RBs

for Jersey

Find the patches of colors so that we can do color shape matching by
using them:

Use GLCHFs to approximate these patches and use those GLCHFs with
circular shape (the fourth row, fourth column one, marked by black
square) to perform the color matching task of human, below are examples
of decomposition of patches:

Transform the interested color image (™M) and GLCHFs

h(m,

approximated color patch ::15) into I-H-S color space hy:
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1 1 1
fman)] [ Y3 VB B
f, (m n):_l_lz{f(m n)] (45)
) |0 )
Z % °
-1 fV (ms'ns) 2 2
f, (m,n)=tan (fz(m n)) fs(ms,ns):\/fv1(ms,ns)+fVQ(mS,nS)

fu(m,,n,) = f2(m,,n,) + f2(m,,n,)

= f2(m,,n,) + f2(m,,n,) + f2(m,,n,)
f, (m, 5))

f,(mg,ng)

fs (mg,n,)

fa(mg,n s))
)<m,—ml2<f,(mg,n)<x/2

f,(m,,n,) =cos™ (-

=sin (=S
- < f,(m,n

st s

We can use RB polar form to represent the color image and patch as follows:

h(ms’ s) A1(ms' s) eIHh(m ") ek%(m ")

f(m ) A (m ) e'Hf(m ) ek¢f (mg.ng) (46)
s!'’s s?'’s
4. Calculate the energy of color patch:
M-1 N-1 M-1 N-1
E, = 2, 2, (. n))* = 3, > Al(m. ) (@1)
mg On mg On

and normalize the color patch h(m,,n,) by E, :

h,(m,,n)=h(m,,n,)/E, (48)
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After normalizing by E,, if input image matches the color patch, then the
correlation values at the matching positions are nearly equal to 1 (1 + Oi + 0j + 0k).

5. Compute the RB Fourier transform of h(m,n.) and f(m,n,):

F(p,s) = DRBFT(f (m,,n,))and

(49)
H,(p,s) = DRBFT (h,(m,,n,))

P .
. < i
e

o — —_—

Ofcff-
Ofcf-l-

5
4
-
4

fdooan
Ofof-§ -

| G
S
r
€
.

b

Figure 23. Decomposition of color patches by using GLCHFs and RBs, we use the one
marked by black square to perform color shape matching (the one with circular shape).
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6. Compute the RB correlation and phase-only correlation:

g(ms' s)_ IDRBFT{ (RB)(pls)Hc—,n(RB)(p!s)}

Firs) (P, S)He_ ey (P 5) (50)
‘ I:(RB) ( P S) Hc—,n(RB) ( P, S)‘

g(m,,n,) = IDRBFT{

The definition of the RB correlation is:

é(ms’ n;) = f(mg,n)) ® g oo h(Mg,N;)
F(p,s)H. (p,s) (51)

= IDRBFT( )
IF(p,s)H, (p,s)|

Correlation can be viewed as a special case of convolution
f(ms’ s)®RB h(ms’ s)_ f(ms’ s)*RB h( m ) (52)
so we just use the algorithms of convolution to implement correlation.
g(m,,n,) = IDRBFT (F(p,s)H,_(p,s)) (53)

where F(p,s) and H_(p,s) are the RB Fourier transform of f(m_n ) and
h(-=m,,-n

s

.), respectively. (The subscript c- means conjugation and spatial reverse).
The RB phase-only correlation can be defined as:

a(ms’ns) = f (ms’ ns) ® RB,POh(ms’ ns)
F(p,s)H, (p.s) (4)

= IDRBFT(|F(p,S)HC_(p,S)|

Using the result of the phase-only correlation we can find the positions of
human object that have similar shape as color patch. Because the shape of human
is nearly circular or ellipsoidal, therefore we can use GLCHFs circularly
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approximated color patch to do correlation and thus find out the locations of
human or children in our test target images.

7. From the phase-only correlation result, we have found the candidate
positions of matched objects.

Then, to determine if the average of brightness, chromaticity, hue, or
saturation of these objects are the same as the one of the color patch, we define
three parameters and their requirements as follows:

|9, (m,,n,)|
m,,n,)+[g;(m,,n))[+g;(m;,n,)+g, (m;,n,)
b= |9, (m,,n,) +g, (m,n,)|
* g, n)|+g (g, no)[+|g; (g n,)
b= |9, (M, n,)[+]gi (M, ny)|
* g, (mgn,)+ g (mg,n,)|+|g; (m,, n,)

P =

+|gk(ms’ s)|

+ gk(ms' s)

(for average brightness match):

¢, <g(m,n,)<c,
¢ <l<eg,
(for average chromaticity match):
p2d(d~1 d <1 (55)
(for average hue match):
>d,(d,~1 d,<1)
(for average saturation match):

>d,(d, ~1 d,<1)

where (r,i,j,k) are real part (r),i imaginary part (i), j imaginary part (j), and k
imaginary part (k) respectively.
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(e) @ (0)

Figure 24. Color shape matching results of two test input images. (marked by red square)
(a)-(e) color patches. (f)-(j) results of different color matching. (k)-(o) are original input
color images. As can be seen from these results, the location of human can be found and
we can separate human with different color clothes by performing the whole color shape
matching task.
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Figure 25. Color shape matching results. (marked by red square)(a) the matching result by using
white color patch. (b) the matching result by using black patch (c)-(d) original test color image.

Figure 26. Color matching results. (marked by red square)(a) the matching result by using blue
color patch. (b) the matching result by using white patch (c)-(d) original test color image.
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8. Finally, we can find the location of human object and match the colors or
their clothes by eq.(55).

Bellow (see Figure 32-34) are results of the color matching by applying above
methods. We can see that the locations of human can be found and after
thresholding, we can successfully accomplish the color matching mask of their
clothes by using patches with different colors

Conclusion

In this work, we derive the eigenvalues of 2D-HGFs and GLCHFs for DQFT and
DRBQFT. The experimental results verify our derivations. Two partial
reconstruction methods of color image are proposed based on GLCHFs and the
reconstructed results demonstrate the efficacy and usefulness of our methods. We
also show that the expansion coefficients can be used as a rotation invariant
feature and also propose a novel method to perform color shape matching of
human jersey effectively.
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Chapter 6

THE QUATERNIONS WITH AN APPLICATION
OF QUADROTORS TEAM FORMATION
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Abstract

The unit quaternion system was invented in 1843 by William Rowan
Hamilton as an extension to the complex number to find an answer to
the question (how to multiply triplets?). Yet, quaternions are extensively
used to represent the attitude of a rigid body such as quadrotors, which is
able to alleviate the singularity problem caused by the Euler angles rep-
resentation. The singularity is in general a point at which a given mathe-
matical object is not defined and it outcome of the so called gimbal lock.
The singularity is occur when the pitch angles rotatio is= +£90°.

In this chapter, a leader-follower formation control problem of quadro-
tors is investigated. The quadrotor dynamic model is represented by unit
quaternion with the consideration of external disturbance. Three differ-
ent control techniques are proposed for both the leader and the follower
robots. First, a nonlineak ., design approach is derived by solving a
Hamilton-Jacobi inequality following from a result for general nonlinear

*E-mail addressiwmj_r@yahoo.com.
TE-mail addressdgu@essex.ac.uk
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affine systems. Second, integral backstepping (IBS) contra@ierslso
addressed for the leader-follower formation control problem. Then, an
iterative Linear Quadratic Regulator (iLQR) is derived to solve the prob-
lem of leader-follower formation. The simulation results from all types
of controllers are compared and robustness performance éf theon-
trollers, fast convergence and small tracking errors of iLQR controllers
over the IBS controllers are demonstrated.

Keywords: Quaternion, Quadrotor UAVSs, Leader-follower formation control

1. Introduction

In the last decade, the focus on control single unit quadrotors has expande
to controlling a team of quadrotors for these to be able to achieve their task:
in variable weather and complicated environments. Team formation flight also
provides advantages over the use of an individual quadrotor in both civil and
military applications, such as inspection of an inaccessible area, disaster mar
agement, and search and rescue in risky circumstances, etc. Most of thes
applications demand more than one quadrotor to accomplish the desired ot
jective [1, 2]. The leader-follower approach is one of the main approaches of
formation control design.

Distributed and decentralised control techniques were used in the literature
to solve the leader-follower control problem. The distributed control technique
assumes that not all followers receive the leader’s information and there is a kinc
of cooperation among them [3—14], while the decentralised control technique
proposes that all followers are able to receive the leader’s information [15—24].
Different controllers have been implemented with both distributed and decen-
tralised control techniques.

1.1. Distributed Control Technique

A robust LQR controller was proposed for individual quadrotors and team

formation as well in [6]. The controller was designed for a linearised sys-

tem around the hovering point. The simulation results indicated the ability of
the controller to overcome the changes in communication topology among the
robots with no dynamic effects. A NNs controller was presented in [3] for ad-

dressing the leader-follower problem. These two studies used Lyapunov theor
to analyse the controller stability.
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A BS controller was discussed in [8] based on graph theory to maintain
the distance among the robots and in [5] with balanced graph and strong con
nection among the robots. The quadrotors’ dynamic systems were linearise
around the hovering point and a good performance was obtained in normal cir
cumstances. A distributed cohesive motion control scheme was presented in [€
for 3D motion to maintain the distance among robots. This technique was devel
oped to become a decentralised technique and significant attempts to deal wit
decentralised control techniques have been made. Three time scale controlle
based on the sliding mode controller were proposed in [4] for dealing with the
guadrotor formation problem. The controllers were used for the path tracking,
attitude tracking and velocity in order to keep the formation and maintain the
distance among the robots with the presence of external disturbance affectin
the leader robot only. The simulation results proved the effectiveness of the
proposed scheme.

A nonlinear control theory was presented to ensure the stability of quadro-
tors team formation in [7]. The wireless communication among the team was
obtained via medium access control protocols. Experimental tests verified the
proposed algorithm with time delay consideration. In [10] the problem of the
leader-follower consensus of a swarm of rigid body space crafts system wa:
analysed based on quaternion representation using a distributed control tecl
nique. They assumed that the communication between two neighbouring fol-
lowers is bidirectional and that all followers can receive the leader information.
Stability analysis was obtained via Lyapunov theory and the simulation results
proved the attitude and angular velocity tracking stability. In [11] a MPC tech-
nique with integrated trajectory planning was analysed with a planning horizon
for both team formation and obstacle avoidance. The method showed good sirr
ulation results. A distributed coordinated control scheme was proposed by [12
to solve the problem of time-delay in leader-follower team formation commu-
nication of quadrotors and the simulation results under sufficient conditions
demonstrated the validity of the presented control technique. Xiwang et al. [13]
proposed a consensus-based approach for the time varying formation contrc
problem. The simulation and the practical test of five quadrotors demonstratec
the validation of the proposed control approach. A vision-based servoing dis-
tributed control approach was presented in [14], where the quadrotors equippe
cameras to track a moving target which provided the position information to be
used for controllers.
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1.2. Decentralised Control Technique

Abdessameudnd Tayebi [15] proposed a procedure which depends on a quater.
nion representation and is split up into translational and rotational control desigr
under the upper bounded translational control input. Analysis of the closed-loog
system stability was achieved using Lyapunov theory. The proposed strateg
took 8 seconds to catch the desired formation shape. A hybrid supervisory
control based on a polar partitioning approach was suggested in [16] for the
team formation problem and for collision avoidance as well. The combination
of discrete quadrotors dynamic system and the supervisor was achieved usin
the parallel composition and the simulation results displayed that this methoc
allows the supervisors to achieve a free collision in normal environments. A
MPC technique was proposed in [21], where its hierarchical control effective-
ness was compared with the potential field technique. The stability of the feed-
back controller based on fluid dynamic models in [17] was obtained based or
smoothed-particle hydrodynamic. The simulation results of the above method:
validated the proposed approaches.

Authors in [18] proposed the trajectory planners and feedback controllers
for following the planned trajectory. Next they proposed a nonlinear decen-
tralised controller for an aggressive formation problem in the micro quadrotors
team in [19]. Communication failures and network time delays impact on team
formation efficiency were considered. Local information of neighbour robots in
the team was used for individual trajectory planning. Preserving the requirec
form was based on the status estimation of neighbour robots. Then the authol
presented two approaches to overcome the problem of concurrent assignme
and planning of trajectories (CAPT) for the quadrotors team, a decentralisec
D-CAPT and centralised C-CAPT in [20]. The decentralised D-CAPT and cen-
tralised C-CAPT results were compared in simulation and practice and the ex
perimental results demonstrated a good performance in indoor application.

In [25] a human user for teleoperation with a haptic device was proposed
for the quadrotor team formation control problem with the cooperation of a BS
controller. The simulation results revealed the ability of the human user to tele-
operate in order to perform the formation. A triangle formation control of three
guadrotors using optimal control techniques via the Pontryagin maximum prin-
ciple was presented in [26] and the simulation results showed the effectivenes
of using team formation rather than using an individual quadrotor in terms of
fuel consumption. In [27] a consensus problem of swarm systems was discusse
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to obtain the time-varying formation based on double-integrator system mod-
elling. The experimental results of the three quadrotors in formation verified
the effectiveness of the proposed approach in dynamic-free conditions.

A new developed framework gathering with a nonlinear MPC technigue was
presented in [28] to solve the problem of coalition formation. The simulation
results showed a zero steady state error in free disturbance and dynamic circun
stances. Koksal et al. [22] presented an adaptive formation scheme for quadrec
tors leader-follower formation. They proposed a distributed control scheme for
the kinematic part, an adaptive LQ controller for pitch and roll angles, pro-
portional control for yaw angle and a PID controller for altitude. Several sce-
narios were implemented in simulation and experiment to validate the algo-
rithm. In [23] a combination of LQR and SM controllers were proposed for a
2D quadrotors leader-follower formation, where the LQR controller was used
for position control while two SM controllers were used for the attitude and
for maintaining the distance between the robots. The simulation results demon
strated the successfulness of combining the two control techniques. A BS con
trol approach with nonlinear controllers was introduced for handling the team
formation problem in [24] and the simulation results proved the effectiveness of
the proposed controllers.

The results in most of the previous papers on leader-follower formation
control of multi-quadrotor system did not consider the effect of external dis-
turbances, such as payload changes (or mass changes), wind disturbance,
accurate model parameters, etc., which often affected the quadrotors’ contrc
performance. Therefore, a quadrotor controller must be robust enough in orde
to reject the effect of disturbances and cover the change in model paramete
uncertainties and external disturbances. Robust state feedback controllers a
very demanding when dealing with the quadrotor control problem. AHke
control approach was able to attenuate the disturbance energy by measuring tl
ratio between the energy of cost vector and the energy of disturbance signe
vector [29].

The rest of this chapter is organized as follows: Section 2 presents the
guadrotor dynamical model derivation based on quaternion representation. Se
tion 3 introduces the leader-follower formation control problem with one leader
and one follower in a distributed way. Section 4 provides a reviewHgg
optimal control approach. The main result of this approach is given as well,
including the details of the designed state feedback controller for the formation
problem. In section 5, presents the integral backstepping concept and the forme
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tion controllers with its stability analysis. In section 6, presents the derivation
of iLQR controller for the leader and the follower. Section 7 shows the per-
formance of the presented controllers while the conclusions of this study are
indicated in section 8.

2. Mathematical Model

To control the motion and rotation of the quadrotor UAV, the mathematical dy-

namic model should be achieved. The quadrotor UAV system has a nonlinea
dynamic system and complicated structure; therefore, it is difficult to represent
its motion and rotation in a simple model. The dynamic model of the quadrotor
UAV depends on some assumptions [30]:

The structure of the quadrotor is rigid and symmetrical;

The propellers are rigid;
e The centre of mass and body fixed frame are coincides;

Thrust and drugs are proportional to the square of the propellers; and

e The difference of gravity by altitude or the spin of the earth is minor.

According to these assumptions, the mathematical model can be derived t
perform the quadrotor UAV fuselage dynamics in space, where it will be easy to
add to it the effects of aerodynamic forces generated by the rotation of the pro
pellers. The coordinate reference system of the quadrotor includes two frame
of reference, the inertial (earth fixed) frame mentiofi€dz, yz, zz) and the
rigid (body fixed) frame mentioneB(x3, y5, z5). Several techniques can be
used to perform the rigid body rotation in space such as Euler angles, Quatel
nions and Tait-Bryan angles [8]. The method used to describe the position an
orientation of the quadrotor is the quaternion method. It is a hyper complex
number of 4-tupl€qo, g1, ¢2, g3) € R* which can be written in many ways as
Q= qo + qui + q2j + g3k andQ = [qo0,q”]" [31] [32] [33].

The north east down (NED) coordinate system is used to parametrise the
dynamic model of the quadrotor with an angle of one-axis rotatianound the
Euler axis of unit vectok € R3 which has a direct physical connection and can

be written as:
| cos %
Q= [ ksin § } (1)
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wherek = Ta anda = 2arccos qp. Moreover, as any complex number the
norm, comp\ex conjugate and inverse of the quaternion can be defined as:

1QI = /& + &+ +d @
Q= —q1 3)

-1_ %
¢ =Tar )

The unit quaternion can be used to represent the coordinate transforma
tion between the inertial fram& and the body framés by defining the mul-
tiplication and the inverse quaternion. The multiplication of two quaternions
Q = [q0,q7]7 andQ’ = [¢, q'"]" is defined as:

Qe= [q qafjrq;()H(f;

_ [ 904¢'o —a'd ] _
q0q+ qod' + S(q)d’

~O

The inverse unit quaternion is defined@s! = [qo, —q”]7? for Q = [q0,q”]".
A vectorxz € R? in the inertial frame can be expressed as a vegtoe R? in
the body frame vias = RTx7. Usingx = [0,x]7, the transformation from
the inertial frame to the body frame is expresseshas- Q' ® X7 ® Q.
And if the norm of the quaternion is equal to ofp@|| = 1, it means that
the inverse is the same as the conjugate, which is the case used to represent t
coordinate transformation between the inertial freénend the body framé
by defining the multiplication and the inverse quaternion. The multiplication of
two quaternions) = [¢o, q”17 andQ’ = [¢,, q'" ] is defined as:

Qe = [q qu_JrqS( )Hqc;”

_ [ 90q'o —a'd ] 5)
¢0q+ qd + S(q)d’

Complimentary Contributor Copy



160 Wesam Jasim and Dongbing Gu

whereS : R* — R3*3 is the skew-symmetric cross product matrix, a@d :
R* — R**4 s the quaternion skew-symmetric cross matrix and they are defined

as.
0 —I3 i)
Sk) = { zzg 0 —x ] (6)

QS(Q): g1  qo q3 —q2 @)
3 Q92 —q1 Qo

QS(Q)Z qgq1 q —43 QG2 ' (8)

The derivative of the quaternian is linked with the quadrotor angular velocity
as follows:

Q=3[ 5 ]ee=je@] )] ©
@ =300 | 0| =jes@] ] | (10)

However, as mentioned above, the quaternion is a unit vector which is utilised
as a rotation operator. Then the rotation from the fixed frame to the body frame
requires a rotational matrix which is the same as in the Euler angles method bu
it does not contain trigonometric functions can be evaluated by rotating a vectol
from the fixed frame to the body frame as follows:

[,S,]—Qea[ﬂ@@l—c;@[g]@

Q
—os@'es@ | ) = % |0 @
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wherek € R3 is avector to be rotated from the fixed frame to the body frame
and

B+ad-6-4 2ae-—qop) 2006+ 0%e)
R, = 20quae +q43) B —aGi+B -0 209203 — qoq) ;
2(q193 — qoq2) 2(q2q3 + qoq1) 96 — 45 — 43 + 43
(12)

thatisk’ = R4k andk = RT K.

Computing the quaternion parameters from Euler angles or computing the
Euler angles from the quaternion parameters can be presented using the rel
tionships [34]:

cos(%) cos(eg) cos(%) + sin(é) sin(%) sin(%)

_ sin(%) cos(5) cos(5) — cos(¥) sin(5) sin(%)
@ cos(£)sin(9) COS(%) + sin(£) cos(9) sin(%) (13)

cos(£) cos(9) sin(%) —sin(£) sin(9) cos(%)

") arctan 2(2(qoq1 + ¢243), @3 — 41 — 43 + 43)
6 | = arcsin(2(qog2 — q193)) D)
0 arctan 2(2(qgogs + ¢192), q% + CI% - q% - q%)

2.1. Quaternion Kinematics

The kinematic equations of the movements of a unit quater@itn can be
driven by rotating the quadrotor with its angular velocity vectan the three
directions to make a slight change in the movement of the quadigtand the
change will be as follows [35]:

0 n3 —Nng N1
_ Aa . Aa —ng 0 niy ng
Q(t+ At) = | cos(5*)l + sin(5*) ns  —m 0 s Q(t)
—nyp —nNng —N3 0
(15)
whereAa = wAt. Then if At is considered small, these expressions hold,

cos(82) = 1,sin(g) & LwAt. Accordingto these assumptions, Equation (15)

can be written as:

Q(t+ At) = [ 14 3Sw)At | Q(1). (16)

Complimentary Contributor Copy



162 Wesam Jasim and Dongbing Gu

Thus the kinematic quaternion movement is

O=AmT A Taske ")
where
0 Wy —Wy Wy
| —we 0 Wy Wy
Ss(w) = wy —wy 0 wy |’ (18)

—wy —wy —w; 0
Then the time derivative of the quaternion kinematics can be written in the
following two forms:

Q1Q®{O}—1[O]®Q. (19)

T2 w 2| w

2.2. Quadrotor Kinematics and Dynamics

The quaternion formula of the dynamics of a solid shape under the effect of
external forces applied to the centre mass which is distinct in the body fixed
frame can be separated into translational and rotational motions and it can b
defined as:

2.2.1. For Translational Motion

mo =1 (20)

Applying the Coriolis equation to (20) we have

dv dv

Applying Equation (21) in body coordinates wit? = (u, v, w)” andwg/z =
(W, wy, w,) T it will be:

U Wy u f:c
m| O | =m0+ | w [ x| v |[)=]|fy (22)
w Wy w fz
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U WrU — Wyw 1 Ja

U | = | wpw—wu | +— | fy . (23)
. m

W Wyl — WaU Iz

2.2.2. For Rotational Motion

or

From Newtons second law
dhB

diy
Applying theequation of Coriolis to Equation (24) we get

m. (24)

dh dh

From thebody coordinate we have?® = Jwg/z, then Equation (25) can be
resolved in the body coordinate frame. The equations of motion of the quadroto
UAVs depend on the two frames which can be written as in [36].

J:r 0 0 wz Wye JI 0 0 W Te
0 J, 0 Gy | =0+| w, [x] 0 J, 0 wy | = 7
0 0 J, W, W, 0 0 J; Wy Tip

(26)

<

or
Wy le 0 0 wyw(Jy — J2) Te
Gy [ =10 7 0 | (| wewsla—a) |+ ]| 7 |) (27
Wy 0 0 J% szy(Jx - Jy) Ty
or
o M Te
X T Jx
o | = % +| 2. (28)
@, wawy(Jo=Jy) T

z

The relationshifpetween position and velocities is given by

i1
it Yy :RQT
z

v ] . (29)

w
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The total force applied to the quadrotor is giveny fi; + fo + f3 + f4 and
the torqueapplied on the UAVs body which is created by the propeheasd is
equal to the difference between each pair of opposite propellers is

T I(fs— f2)
T | = I(f1— f3) : (30)
TY fet+fa—fi—f3

hence, the effect of gravity can be written as:

0 ] { —2mg(q193 + q0q2) ]
fg = Ryq 0 = —2mg(q2q3 — qoq1) (31)
—mg —mg(q} — ¢ — & + 43)
Then the translational equations can be written as:
{ 4 ] [ WoU — Wyw } { —2mg(q1q3 + q0g2) ] 1 { 0 ]
U | = | waw—wou | + —2mg(q2q3 — qoq1) +—10
W Wyl — WyV -mg(@@ — ¢ — ¢3 + ¢3) o
(32)
[ z ] { 0 ] [ 2(q193 + q0q2)
gl=1 0 | +]| 2(¢e—qq) =, (33)
Z —g d-ad-a+dad "

In therotational motion part, two differential equations hold: the quaternion and
the angular velocity differential equation. The quaternion rate equation can be
rewritten as:

o Qo —@n —92 —G¢ 0
1 _
@ | _ 2| @1 9 q3 Qg2 Wz . (34)
q2 21 g9 g —q Wy
a3 Qg —q2 q do Wz

Then thefull model for the quadrotor kinematics and dynamics can be sum-
marised as follows:

i 0 2(q193 + qoq2) f
g =1 0 |+ 2(q293 — qoq1) o (35)

3 —g @ —ai— a3+
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do o —q@ —9 —G 0
@l _lla g - @ W (36)
o 21 ¢ 9 @ —¢ Wy
q3 B3 —¢ @  q Wy
wywz (Jy—Jz) Tq1
o (fo=1.) 4,
. WapWz Jg—Jz
wy | = " +| 72 - (37)
U'.JZ wawy (Jo—Jy) 31—3

z

Thefull mathematical model is

(i = 2(q1q3 + QOQ2)%

i = 2(q2q3 — CIoCh)%
f=—g+t(@-F-B+R)L
do = 3(—qwz — qawy — q3w:)

¢ = 3 (qows — 3wy + Qow>) (38)
o = 3(qaws + qowy — Lw2)

3 = 3(—qows + qrwy + quz)

Wr = Wy, Ty JZJZ I FwyS + qu

Wy = W Wy JyJT + J’“ wgcQ + Tq2

. Jy—J. 1
Wy = Wey = - +JIT‘I3

3. Leader-Follower Formation Problem for Quadrotors

3.1. Quadrotor Model

To describe the orientation of a quadrotor, the quaternion representation is uset
which is able to alleviate the singularity problem caused by the Euler angles
representation . The full dynamic model of a quadrotor can be written as:

pz =V;
= —ge + nf1
{ } 1 [ —qf w; (39)
-2 %OI“‘ S qz Ws
zwz = ( zwz - G( ) + 7
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wherei is L for the leader and’ for the follower,m; is the quadrotor mass,
w; = [wm,wiy,wiz]T is the angular velocity in the body framg; is the3 x 3
diagonal matrix representing three inertial moments in the body fréhe;)
represents the gyroscopic effestis the torque vector applied on the quadrotor,
the unit quaternioflgo, ¢i1, iz, ¢is]” = [¢i0, al' ] whereq; = [qi1, giz, qis]” is
the vector part and,g is the scalar part of the quaternion, = [v;z, viy, viz)T
is the linear velocityp;, = [mi,yi,zi]T is the position vector, the vecter =
[0,0,1]T, andI is the3 x 3 unit matrix. The rotation matrix; is related to the
unit quaternion through the Rodrigues formula:

R; = (qio® — af a;)I + 2aqiq] + 2gi0S(q;)
andSs is the skew-symmetric cross product matrix:

0 —q3 a2
S(q;) = i3 0  —aqa
—Gi2 Qi1 0

3.2. Leader-Follower Formation Control Problem

One leader and one follower are considered in the leader-follower formation
control problem to be solved in this work. The leader control problem is formu-
lated as a trajectory tracking problem, and the follower control problem is also
formulated as a tracking problem, but with a different tracking target.

The follower will keep its yaw angle (), gr3) as the same as the leader
when it maintains the formation pattern. It will moves to a desired position
Prd4, Which is determined by a desired distante desired incidence angte
and a desired bearing angte A new frameF” is defined by the translation of
the leader framd. to the frame with the desired follower positigrn-; as the
origin. As shown in figure 1, the desired incidence angle is measured betweel
the desired distancé andx — y plane in the new framé"”, and the desired
bearing angle is measured betweaeaxis and the projection efin z — y plane
in the new frame&’. The desired positiop 4 is

COS P COS T
pPra=pr — REd | cospsine
sin p

wherepy is the leader position.
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Now, the formation control problem for the follower is to satisfy the follow-
ing conditions:
limy o0 (PFd — PF) =0
lim; 00 (qro — qro) =0 (40)
lim; 00(qr3 — qr3) =0

The leader just tracks a desired trajectory represented QY ¢pod, 91,34)-
So, the formation control problem for the leader is to satisfy the following con-
ditions:

lim¢ o0 (Pra —Pr) =0
limy—00(qrod — qro) =0 (41)
limy—00(qr3d — qr3) =0

In summary, the leader-follower formation control problem to be solved in
this work is a distributed control scheme, i.e. the leader and the follower have
their own individual controllers without the need for a centralised unit. Assume
both the leader and the follower are able to obtain their own pose information
and the follower is able to obtain the leader’s pose information via wireless
communication. The design goal of the controllers is to find the state feedbacl
control law for the thrust and torque inputs for both the leader and the follower.
The leader-follower formation control problem is solved if both the conditions
(40) and (41) are satisfied.

The communication among the agents is assumed to be available. The pc
sition pz,, quaternion componentg,, andg; s of the leaderL and its first and
second derivativegr o, Gro, ¢r.3 andgrs are assumed available and measurable.
The linear velocity of the leadet and its derivativevy, andvy are assumed
bounded and available for the follower.

4. Formation H,, Controllers

The controller design for the leader and the follower is baseH grsuboptimal
control. The followerH, controller is designed by following the introduction
of an error state model, and the introduction é¢f @ control theorem for general
affine systems. Then the lead€r, controller is briefly presented later.
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InertialCoordinate

Figure 1. Body frames in formation.

4.1. Follower State Error Model
The control strategy for the follower is to track the desired posipigy. The
tracking errors for the follower according to the nonlinear dynamic system (39)
can be written as:

Pr = Prd — PF

Vp =VpRqg— VF

{ qro ] _ [ qrod — 4F0 ]
ar qrd — qr
Wp = Wpd — WF

wherev g = prqis the desired linear velocitiroq, ara)” = [q10,0,0, qr3]”
is the desired quaternion, afdr4] = [0,0,0]7 is the desired angular velocity.
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Then equation (39) can be rewritten in an error form as:

Pr=Vp

‘;’F =Vpq+ ge — %RFQ

[ QFO } 1 [ qror (42)
ar | 2| —(Grol +S(ar))or

wp = J ' S(0r) Jpop + Jo G(Or) — Jp TR

Consider the external disturbanags = [d7 ,d’ ]” applied to the nonlin-
ear system (42), whekd, . = [du,.,, dvp, dop )"y duyp = [dup, s dup,» dup, )"
are the disturbance vectors appliedpe andwr, respectively. Those distur-
bances are used here to model the changes of mass and moment, and the wi
disturbances.

Let
Pr
qro
Xp = | qF
VE
| Wr

Vg + ge — 7%;RFG

ur = G(or) — mr

Thenonlinear dynamic system (42) with the disturbance vedtocan be writ-
ten into an affine nonlinear form:

xp = f(xr) + g9(xr)ur + k(xr)dr (43)
where
VR
5Ap0r
f(xp)=| —%(Grol + S(ar))ar
03x1
J1S(@r) Jpip
03x3 0O3x3
O1x3 O1x3
g(xp) = k(xp) = | 03x3 03x3
I 03x3
O3x3  Jp'
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4.2. H,, Suboptimal Control Approach

In this section, a brief overview oH ., suboptimal control approach is summa-
rized for systems of the form:

x = f(x) + g(x)u+ k(x)d
{ y = h(x) 49

wherex € R" is a state vectom € R™ is an input vectory € R? is an output
vector, andd € R? is a disturbance vector. Detailed informationén, control
approach can be found in [29].

We assume the existence of an equilibrinmi.e. f(x,) = 0, and we also
assumer(x,) = 0. Given a smooth state feedback controller:

u=I[(x)
{ I(x.) = 0 (45)

The H, suboptimal control problem considers thg-gain from the disturbance
d to the vector otz = [y”, u”]”. This problem is defined below.

Problem 1. Let v be a fixed nonnegative constant. The closed loop system
consisting of the nonlinear system (44) and the state feedback con{eilgs
said to havel;-gain less than or equal tg fromd to z if

T T
/O lz(t)]|*dt < 72/0 ld(t)[*dt + K (x(0)) (46)
forall 7> 0 and alld € Ly(0,7") with initial condition x(0), where0 <
K(x) < oo and K (x,) = 0.

For the nonlinear system (44) and > 0, define the Hamiltonian
H,(x,V(x)) as below:

X X TV(x
V() =200 1) 4 2OV Tk ) — g1 0] 20
s @

Theorem 1. [29] If there exists a smooth solutioi > 0 to the Hamilton-
Jacobi inequality:
H,(x,V(x)) <0; V(x4) =0 (48)
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then the closed-loop system for the state feedback controller:

2TV (x)
ox

hasLy-gain lessthan or equal toy, and K (x) = 2V (x).

u=—g’(

x)

(49)

The nonlinear system (44) is called zero-state observable if for any trajec-
tory x(¢) such thaty (¢) = 0,u(t) = 0,d(¢t) = 0 impliesx(t) = x..

Proposition 1. [29] If the nonlinear systenf44) is zero-state observable and
there exists a proper solutio > 0 to the Hamilton-Jacobi inequality, then
V(x) > 0 for x(t) # x, and the closed loop systef#4), (49) withd = 0 is
globally asymptotically stable.

4.3. Follower H,, Controller
The H,, suboptimal control approach will be used to design the follower con-

troller in this section. The following form of energy functidhis suggested for
the dynamic model (43):

Crpl  0O3x3 Kryp O3x3 Pr
_lrr v T T O3x3 03x3  03x3 JrKFrq qr
Vixr) = 2 [ pr ar V& OF ] Krp 03x3  Kro  03x3 VF
03x3 JrKrq 03x3 JrKFo Wr

+2C7,(1 = Gro) (50)

where diagonal matriceKr, > 0, Kr, > 0,Kp, > 0,Kp, > 0 are the
proportional and derivative gains for translational and rotational pafts. >
0,Crq > 0 are constants. We have:

oV (xp

8XF = [Cpr)F + KFp{’F —2CFq JFKFQ(Z)F
Kpppr + Kpyr JrKpeQr + JrKpuwr)]
Accordingly the controller is
aTV!XF
aXF
| Kpppr + KpyVp
Krqar + Krowr

up = —g’ (xp)

(51)
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The following weighting matrices are chosen with diagonal matri€es > 0,
Wpgo >0, Wpg > 0andWpgy > 0.

h(xp) = WVWrbh VWrah VWrsvh VWepah]"

which satisfied(x.r) = 0, where the equilibrium point,.r = [01x3, 1,013,
01x3,01x3]7. And we know

V(x.p) =0 (52)
Now the team formation problem of the quadrotors under the disturbdnde
defined below.

Problem 2. Given the equilibrium poink, r, find the parameter&r,, Kr,,
Kry, Ky, Crp, Crq in order to enable the closed-loop systé#3) with the
above controllem (51) to haveL,-gain less than or equal tog.

Next we want to show our main result in the following theorem.

Theorem 2. If the following conditions are satisfied, the closed-loop system
(43) with the above controlleny (51) has Lo-gain less than or equal tog.

And the closed loop syste@3), (51) with dr = 0 is asymptotically locally
stable for the equilibrium point., .

CrpCrq >0
CFpKFv > K}27‘p
CrpCroKrvKpw > CrpJpKp Ky — Jp Ky Ki), + Crg Ky Kpw

1
CFp = KFpKF’L) <1 - 2)
TF

1
CFq = KFqKFw (2 - 1)
TF

2
Y| W,
1Kppl? > 22Nl )
TP — 1
2
vl W,
Kl > 2] -
Te —
2 ([Wes|| + 2| K
1K o2 > ZEIWrall + 21K, ) o5
Y — 1
2 Ja—
(K| > ZEUWVEal = V3ITr 1K ryl) )

=1
F
[Weill > 05 [[Wrall > 0; [[Wes| > 0; [Wral >0
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Proof. With the given conditions, we need to show {1)xr) > 0 and(2) the

HamiltonianH.,,. (xr, V(xr)) < 0. Then the first part of the theorem can be
proved by using Theorem 1.

(1) Since
2(1 = Gro) = (1 = Gro)* + @par
> qpdr
then
Crpl  0Osxs Krp 03x3 PF
V(xr) > %[ Pr G4r Vi @F | 2?;; (ojfff (;(3':3 Jgfi:q gi
03x3 JrKpq 03x3 JrKFro wp

Thus the condition fol/ (xr) > 0 are

CrpCrq >0

C’Fp-[{Fv > K}27‘p
CrpCroKroKpy > CrpJp K Kpy — Jr K, Kpy + CrgK i, Kpo
2

~ - ~ - - - 1. ~
H,, (xp,V(xF)) = ppCrpVr — ApCro@r + VEKr,VE — §W£JFKFq(QFOI

+ S(QF))(Z)F + Q}T;quS(JJF)JpcDF + @EKFwS(CDF)JF(DF
1 1 1 1

+ - —1> KFf)F+KF1;‘7F2+(_1>||KF€lF
5 (2 1) 15y s (= :

. 1 - 1 -
+ Krurl? + 51 Wer 5 + 5 Wl e
1 - 1 .
+ 3 IWrsllFe | + 5 W o |

By choosing

)

1
CFq :KFqKFw <2 —].

1

CFp = KFpKFv (1 - 2)
F

F >
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then

H,.(xp,V(xp)) = VEKryVi + QR KpgS(@F) Jpir — iwﬁijFq(qFOI

= ~ ~ ~ - 1 1
+ 5(@r)or + 0 KpoS(@r) Jror + 5 (72 _ 1)
F

N - 1 1
(KPRl + 1K rol PV A7) + 3 (2 - 1>
TF

- N 1 .
(1K FrqlPllarl® + | Kol lar|?) + §||WF1HHPFH2
1 ~ 1 5 1 -
+ §HWF2HHQFH2 + §HWF3HHV1~“H2 + §HWF4HHWFH2

By using[|S(@r))|| = llorll, WrT Krpvr| < | EKrpllIVEIP (Grol +
S(ar))ll

< V3B, |0 JrKre(Grol + S(ar))or| < |EKrqllllTrlI@r|?(l(grol +
S(ar))

q%KFqS((ZJF)JFJJF =0 ande?KFwS(UJF)JF(IJF = 0 we have

—V3 _ . 1/1
Hyp(xr, V(xr)) < THKFqHIIJFHHWFH2 + | K ppl[Ve]* + FACT 1
F

- - 1 1 5
(e 2151 + K el P95 %) + 2 (7—2 - 1) (1Kl
F
5 1 N 1 -
KR P 17) + W17 + LWl s

1 B 1 ~
+ §\|WF3H||VF||2 + §||WF4HHWF||2

Thus,the conditions fotf.,,. (x, V(xr)) < 0 are

1/1 1
= = 1) |Krpl? + = ||[Wri] <0
5 (5= 1) 1l + g <

1 1 1
= =1 (K g |I? + S [Weell <0
5 (57— 1) 1ral? + 51wl <
1Kl + 2 (L 1) 5?2 Wasl <0
Fp 2 7% Fu 2 F3|l >

V3
el Kl +

1

1 1
= = 1) [|Krol* + 2| Wra] €0
3 (- 1) el + e <
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i.e.
2
2 _ YellWri]|
||KFp” = 27_1
Tr
2
2 . VellWr2|
||KFq” = F27_1
Tr
2
YE(IWEsl + 2| Krpll)
| K ppl]? > £ - P
TF
1&g |? > AWl = V3ITE MK rpl)
w -
v —1

It is trivial to show that the nonlinear system (43) is zero-state observable
for the equilibrium pointx. . Further due to the fact thaf(xr) > 0 and it
is a proper function (i.e. for each > 0 the set{zr : 0 < V(zp) < 5}
is compact), the closed-loop system (43), (51) wdth = 0 is asymptotically
locally stable for the equilibrium point,r according to Proposition 1. This
proves the second part of the theorem. O

Remark 1. It should be noted that the proof of Theoreni#y; .. pr = 0,

limy o0 QF = 0, limy_oo Vp = 0 andlim;_,, O = 0, meets the conditions of
(40).

Finally fromuy, we can have
Vra+ge—ALR
Fd T ge— g hvee
G(wp) —1p

_ [ Kpppr + KpyVE }
Krqar + Kr,wr

urp =

Then the total force and the torque vector applied to the folloyyegndrp
are obtained,

fr=(kp.2F + kpy.Op, + 01, — d(Rs1 cos pcos o + Ras cos psino + Ragz sin p)
mp

TFo = GF1 — G T dFs

Tr =KpQr + Kpoor + G(OrF)

+9)
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where

) Ru Rz Ris
RI = | Ry Ry R
R31 R3» Rass

4.4. lLeader H,, Controller

The control strategy for the leader is to track a desired trajectory
(Prd, 9r0d, 934)- The tracking errors for the leader according to the nonlin-
ear dynamic system (39) can be written as:

PL = PLd — PL
VL =Vrq— VL
[ qNLO } _ [ qrod — qrLo }
qaL ard — 4L
WL =Wrd — WL
whereqrod, dr.d, Vid, Wrqd are assumed to be constant for the desired tracking

trajectory. Then equation (39) can be rewritten in an error form as:

f)L =VvL
v = ge — —RLe

[ qro ] _1 [ arwr (57)
ar (qrol + S(QL)) wr,
) —

-2
wL—J S(WL)JLLOL—i-J G((I) JL_lTL

Let

XL = qrL

uj, =
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The nonlinear dynamic system (57) with the disturbance vaettocanbe
written into an affine nonlinear form:

Xy ::f(xL)—%g(xL)u[/+—k(xL)dL (58)

where

\47
3AL0L
fxp)=| =3 (Grol +S(aw)) @
03x1
J S (@) Jror

03x3 O3xs

O1x3 O1x3

9(xr) = k(xr) = | O3x3 Osxs
I O3x3

O3x3 J!

The H,, suboptimal control approach is used to design the leader controller.
By defining an energy function, the leader controller is obtained as below by
following a similar procedure for stability analysis.

fo = (krzZn + kro. 0Lz + 9) = = m_qu Tz
~ _ NLO L1 L2 L3

1, = Krqar + Krowr + G(@r)
wherep;, = [Z1,7r, Z1]7 is the position tracking error vector ang, =
[@Lx,@Ly,@LZ]T is the linear velocity error vector. The diagonal matri-
CeSKLp = diag(kapkLyu kLz)a K, = diag(kva’kLvyakva)y KLq =
diag(krg,» kLgy» krgs)s Krw = diag (krw,,krw,, kL..) are selected to satisfy
the stability conditions, which have been presented in [37] [38].

5. Integral Backstepping Follower Formation Control

Integral backstepping control is one of popular control approaches for both indi-
vidual and multiple quadrotors. In this section, it will be applied for the leader-
follower formation problem. The leader and the follower desired quaternions
are assumed to bg,14 = ¢qr2¢ = 0 andqp1g = qr1 andgrog = qro. An IBS
controller for the follower is developed first. The IBS controller for the leader is
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from our previous work [39] and its main result is just presented in this section.
They will be used in the simulation later for evaluating the robustnesH of
controllers.

5.1. Follower Integral Backstepping Controller

The IBS controller for the follower is to track the leader and maintain a desired
distance between them with desired incidence and bearing angles. We start wit
the follower’s translational part, which can be rewritten from the dynamic model
(39) as:

pr = f(pr)+9(pr)fr (59)

where fr is the total thrust control input and

T
fpr)=1[0 0 —g
Upy/MF
9(pr) = Upy/MF
(qro® — qr1% — qr2® + qr3®) /mp
with
{ upz = 2(qr19r3 + qrogr2)
ury = 2 (qr2qr3 — qroqr1)

Then the position tracking error between the leader and the follower can be
calculated as

COSpCOS o
f)F:ppd—pF:pL—Rgd cospsinog | — pp (60)
sin p
and its derivative
Pr =Drd — Pr =Prd— VF (61)

wherevp is a virtual control, and its desirable value can be described as:

vl = ppg +brPr + krbr (62)
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wherebr andkp are two positive matricespr = [ prdt is the integral of the
follower position error and added to minimize the steady-state error.

Now, consider the linear velocity error between the leader and the follower
as:

VF =Vh—Pr (63)
By substituting (62) into (63) we obtain:
Vi = Prd + brPr + krPr — PF (64)
and its time derivative
VE = Pra+brbr + krbr — Br (65)
Then from (62) and (63) we can rewrite (61) in terms of linear velocity error as:
Pr =Vr — bpPr — krbr (66)
By substituting (59) and (66) into (65), the time derivative of linear velocity
error can be rewritten as:
VP =Prq+ bpvp — bibp — bpkppr + kpbpr — f(Pr) — 9(Pr)fr  (67)
The desirable time derivative of the linear velocity error is supposed to be:
Vp=—cpVp — Pr (68)

wherecp is a positive diagonal matrix. Now, the total thryfst, the longitudinal
ur; and laterak r, motion control can be found by subtracting (67) from (68)
as follows:

fr=(@g+vr.+(1— by, + kr:)zZr + (br: + cp2)0p: — br:kr.Zr — d(R31 cospcoso
m
> (69)

(gro? — qr1? — qr2® + qrs?)

+ Rz cospsino + Rsgsin p))

urs =(0pe + (1 — b3, + kpz)ir + (brs + CFrz)0re — brakraTr — d(R11 cos pcos o

I (70)

+ Ri2 cospsino + Ryszsin p))T
F

upy =(0ny + (1 — b%y + kry)ir + (bey + cry)0ry — brykpyr — d(Ra1 cos peoso
+ Ras cos psin o + Ras sin P))n;p (71)
ja
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For the attitude stability, a nonlinear controller from [39] is used.

TR = KquF + Kp,OF + G((Z)F)
The attitude stability for the follower was demonstrated in [39] . Next, we show
the stability of follower’s translational part.

5.2. Stability Analysis for Follower

The following candidate Lyapunov function is chosen for the stability analysis
of follower’s translational part with the integral backstepping controller:

1 _+_ T T
V= §(p£PF +ViVE + krPEDR) (72)
andits time derivative
V =pLbr + VEvp + krPEDF (73)

By substitutingpr = pr, and equations (66) and (68) into (73), equation (73)
becomes:

V = —bppppr — crVipve <0 (74)

Finally, (74) is less than zero providég andcg are positive diagonal ma-
trices, i.e.V < 0,Y(pr,vr) # 0andV(0) = 0. It can be concluded from the
positive definition ofl” and applying LaSalle theorem that a global asymptotic
stability is guaranteed. This leads to the conclude that ,.. pr = 0 and
limy o, VF = 0, which meets the position condition of (40).

5.3. Leader Integral Backstepping Controller

The leader is to track a desired traject@ry,. Its integral backstepping con-
troller was developed in [39]. The result is that the total force and horizontal
position control lawsfy,, ur, andur, can be written as

fr=CGra+tg+ 1 —br.2+ k)2 + (br, + cr.)or. — br.kr.zr)
mr,

75)
2 2 2 D) (
910 — 911 — 4912 T 913
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ure = (#ra+ (1 = bro” + kra)@r + (bre + CLa) U0 — bszin’L)%
L(76)
upy = (fira+ (1= bry® + kry)ir + (bry + cLy) oLy — bLykLyﬂL)%
’ (77)

wherethe linear velocity tracking errors,,, o7, andvy,, are defined as:

ULy = bpaTp + Tpg + kpaTp —
Uy = bry¥r + Yra + kryyr — L
Upz = br.Zp + Zra + kr.2r — 21
And the torque vector applied to the leader quadretoe R? is designed
as

11, = Krqar + Kroor + G(@r)

6. FormationiLQR Controllers

The controller design for the leader and the follower is based on iLQR optimal
control algorithm. The follower iLQR controller is designed by following the
introduction of an error state model. Then the leader iLQR controller is briefly
presented later.

6.1. ILQR Optimal Control Approach

iLQR is one of the optimal control strategies that is formulated to obtain the
control signals that minimises a performance criterion to satisfy the physical
model constraints. The iLQR strategy is utilised based on LQR technique to
design the full state quadrotor’s controller. Linearising the nonlinear dynamic
model (39), we obtain

Xik+1 = [ (Xik, Wik) (78)
with a quadratic cost function of the form
1 =
Ji :i(XiN —x) T Qin(xiv — %) + 5 kzo (%1, QiXik
+ujRiu) (79)
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wherex; = [x;, &4, Yi, Ui, 2is %, Q05 4it» Gi2, 43, Wia» Wiy, wiz] . and the quadro-
tor is controlled by its altitude forcg and attitude torque vectey. The control
vector can be defined ag = [f;, nql,nqz,n%]T. We will not use the notation
1 in the coming equations for simplicity.

The proposed strategy starts with initial control sigriats 0, and the lin-
earised nonlinear system around the control signand states;, then solves
the LQR problem. Then these steps are repeated (iterated) until a good perfo
mance is achieved. Let the deviations fragnandx; be du, anddix, respec-
tively. The linearisation model is

O0xpr1 = Ardxy + Brdug (80)

Where the matriced;, = Jx f(xx, ux) andBy, = Jyu f(xx, uy) are denoted
by the Jacobians. These are evaluated algngnduy, respectively. Based on
the linear model (80), the cost function (79) can be written as:

1
J :i(XN + oxn — x)TQn(xn + oxy — x)

N 1
+ = Z xp, + 0x) T Q(xy + 0%)
k 0
+ (ux + 5u)TR(uk + du)). (81)

Adding a constraint to the cost function (81), the value function is
1 VA *
A% :§(XN +oxy — x¥) Qn(xy + oxy — x¥)

%Z (k. + 0%) T QU + %) + (g + )T
k=

R(Uk + 511) + 6)‘k+1 (Akéxk + Bpoug — 5Xk+1)). (82)

The following Hamiltonian function is a first step to proceed towards the optimal
control

H; :(Xk + 5Xk)TQ(Xk + 5Xk) + (uk + 511;€)T]:_{(111C + 5uk)
+ 5)\£+1(Ak5xk + Bkéuk) (83)
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and its derivatives with respect fexy, du, andoxy are

OHy,
=0\
8ééxk) F
H,
0 5uk) B
oy
Aoxy) N
whichleads to the following conditions:
oM = AL 6N + Q(Oxy, + xx) (84)
0 = R(ug + dug) + B 6\pi1 (85)
5/\]\7 = Qf(XN + (5XN — X*). (86)

Based on the boundary condition (86)y; is assumed to be
O = SpoOxXp + v (87)

for some unknown sequenc8g andv. The boundary conditions fof;, and

vy are
Sy =Qn
{ vN = QN (XN — X4) (88)

and from the boundary condition (83, is obtained as:
du, = —R7'BF N1 — uy. (89)

By solving equations (80), (85) and (87), we obtain

ouy = —Kox — Kyvp1 — Kyug (90)
where
K = (B[ Sp41Bi + R) "' B Sp11 Ay (91)
K, = (B} Sp1Br + R) ' B (92)
Ky = (Bf Sp41Br + R) 'R, (93)

Backward recursion equations are used to solve the entire sequanaadu
as:
S = Ag Sk (Ay — BLK) +Q (94)
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v = (Ak — BkK)TVk+1 - KTRuk + Qxz (95)

where the gaing( and K are built on the Riccati equation while the gdin
is reliant on auxiliary sequence (95).

The entire sequences 6f andv can be solved by the backward recursion
(94) and (95) respectively, with the final state weighting matrix boundary con-
dition Sy stated in the cost function (81). The control law 90 includes three
terms. The gains of the first and the third terms depend on the solution of Ric-
cati equation, while the second term gain depends on the auxiliary seqyence
In the first termgx;, represents the error between the actual quadrotor state anc
the desired state, and in the third term, represents the nominal control ac-
tion. Once the modified LQR problem is solved, an improved nominal control
sequence can be obtained; = u; + dug, whereu, is the nominal control
anduj is the improved control. Then the total control laws are concluded as
follows:

oy, = —Kidxik — KipVikr1 — Kiuik
K; = (Bl Sik+1Bir + Ry) "' BL Sir1 Ak
Kiv = (B}, Sik+1Bix + Ri) "' B}
Kiw = (B} Sik11Bir + Ri) 'R, (96)
Sik = AL Sik1(Aiw — BipK;) + Q;
vit = (A, — B Ki) T vigy1 — K] Rjwgg + Qixye
L uj, = wip + dugg

6.2. Leader and Follower iLQR Controllers

By following the leader-follower formation control problem described in Sub-
section 3.2, the leader control law set is

0frk = —Kp.0zpp — Kpawver,,, — Krpfrk
0Trgk = —Krgdark — KrquVqr,, — KrqLTLgk

ka = 32 2 ngz 2
90k~ 901k~ 902k T9L 3k

fie = foe +9frk
Tzqk = Trgk t+ (57'qu

where

52Lk _ ZLkd — ZLk
ULzkd — VLzk
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Lkd — ALk
dqri = { q d }
WLkd — WLk

and the follower control law set is

Ofrk = —Kr.02pk — KpayVeor, ., — Kfrfre

0Trgk = —Kpq0Qry — Krquvar, ., — KrqpTrgk

fre = (g+ 91, — d(Rs31 cos pcoso + Rsg cos psino
: m

+Hss sin p)) q%Ok*q%ij%zk*q%:ak

Jrr = fre +0fFk

Tlf“qk = Trgk + 0TFgk

where

52Fk _ ZFkd — AFk
VFzkd — VFzk

_ qrLkr — drk
odrk = [ WFkd — WFk }

7. Simulations

The proposedi,,, IBS and iLQR controllers were tested in a MATLAB simu-
lator of two quadrotors, one leader and one follower. The quadrotor parameter:
used in the simulation are described in Table 1. Same path was presented |
the simulation to show the performance of using the proposed three controllers
The desired path to be tracked by the leader was

xrq = 2cos(tm/80) ; yrd = 2sin(tm/80)
zrg =14 0.1t ; qr3¢ =0
with the initial conditonsp;, = [2,0,0]7 metres and[qro,qf]T =

[~1,0,0,0]”. The follower tried to maintain the desired distance with the leader
d = 2 metres, the desired incidence angle= 0 and the desired bearing an-
glec = —nx/12. The initial condition of the follower wapy = [0.1,0.5,0]”
metres andgro, q-]7 = [-1,0,0, 0],

7.1. H, Controller

To test the robustness of the propogégd controller, the model parameter un-
certainties (mass and inertia) were increased and decreasg@(%y and a
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Table 1. Quadrotor Parameters

Symbol || Definition Value Units
A Roll Inertia | 4.4 x 1073 | kg.m?
Jy Pitch Inertia | 4.4 x 1073 | kg.m?
J. Yaw Inertia | 8.8 x 1073 | kg.m?
m Mass 0.5 kg
g Gravity 9.81 m/s?
l Arm Length 0.17 m
I Rotor Inertia| 4.4 x 1075 | kg.m?
Xy
Yo —————dull ! Motor Quadrotor
{sadioion ADyn[ml:ics Q Dynémi(‘g
Controller
F 8 T
qod: q3d

Figure 2. One Loop Control Block Diagram.

forcedisturbance of 2N was added in different operation times to the positions
for 0.25 seconds duration, while the disturbance added to the attitude was of th

form

d; =0.01 + 0.01sin(0.0247¢) + 0.05 sin(1.327¢t). 97)

The constanty was chosen to be;, = v = 1.05 and the weight-
ing matrices were chosen to B&,, = 1150, Wgy, = 1575, Wyo =
Wge = diag(0.0235,0.0235,0.0009), W3, = 10, Wps, = 675, and
Wiy = Wgy = diag(0.0043,0.0043,0.00156). Under these parameters,
the feedback control matrices were obtained tokbe = 111, kz,, = 50,
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kp, = 130, kp,. = 100, K1, = Kp, = diag(0.5,0.5,0.095) and K1, =
Ko, = diag(0.07,0.07,0.025).

---------- Nominal

= = = Disturbanced
---------- +20% Mass
= = =-20% Mass

y (m) -1 -2 7 X (m)

Figure 3. Leader-Follower Formation in First Path unélgy ControllerBased
on Quaternion Representation.

The obtained results are shown in Figures 3 - 6 with the conditions (1) no
disturbance, (2) force disturbandg_, = —2Nm at10 < ¢ > 10.25 seconds,
dy,, = 2Nm at20 <t > 20.25 secondsd% = 2Nm at30 < t > 30.25
seconds and the attitude part for the leader and the follower is disturbed usin
(97), (3)+20% model parameter uncertainty, and (420% model parameter
uncertainty. The above conditions were applied for the leader and the followel
at the same time.

Figure 3 shows the formation trajectories of two quadrotors obtained using
the H, controllers when they tracked the desired path. From this figure we can
see that the{,, controllers produced good formation performances with small
acceptable errors, fast rejection of the external disturbances, and quick recovel
of the model parameter uncertainties. The quaternions of the leader and th
follower are shown in Figures 4 and 5 with small oscillations. The distances
between the leader and the follower for are shown in Figure 6. Again, less
oscillation in disturbance rejection was observed from the result.

Figure 7 shows the performance of the two quadrotors when only the leade
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Figure 4. Leader Quaternions in First Path undgr, Controller Based on

Quaternion Representation.
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Figure 6. The Distance Between the Leader and the Follower uiige€Con-
troller.
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Figure 7. Leader-Follower Formation in First Path unéigg ControllerBased
on Quaternion Representation with Leader Disturbance Only.
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was affected by force disturbandg,, = —4Nm during10 < ¢t > 10.25
seconds¢,,, = 4Nm during20 < ¢ > 20.25 secondsdey = 4Nm during
30 <t > 30.25 seconds, and the leader attitude part is disturbed using (97).

It is clear that the follower tracked the leader and maintained the distance
with very small errors in all circumstances.

7.2. IBS Controller

The IBS controllers were tested in simulation to track a desired path
by the leader and maintain the desired distance, desired incidence angl
and desired bearing angle between them for the follower. The parame:
ters chosen weré;, = diag(180,0.34,0.34), ¢, = diag(0.7,0.02,0.02),

kr, = diag(0.0516,0.0081,0.0081) , bp = diag(12,0.7,0.7), cp =
diag(1.4,0.02,0.02) andkp = diag(0.01,0.001, 0.001).

Figure 8 shows the formation trajectories of two quadrotors obtained by
using the IBS controller. From this figure we can see that the IBS controller
performed with high error, large oscillation in disturbance rejection and model
parameter uncertainty recovery.

The quaternions of the leader and the follower are shown in Figures 9 anc
10, respectively. High oscillation is observed in these two figures. The dis-
tances between the leader and the follower are shown in Figure 11. Again, higl
oscillation can be observed from the result of this figure.

Figure 12 shows the performance using the IBS controller when only the
leader was affected by force disturbange, = —4Nm during10 < ¢ > 10.25
secondsd,,, = 4Nm during20 < ¢ > 20.25 secondsd,,, = 4Nm during
30 <t > 30.25 seconds, and the attitude part is disturbance using (97).

It is clear that the follower tracked the leader and maintained the distance
with high error and oscillation in all circumstances.

7.3. iLQR Controller

To validate the iLQR control strategy, it was tested in the simulation of two
guadrotors in the leader-follower formation problem. The desired path was alsc
used to test the LQR control for comparison purposes.

Figure 13 shows the response of the leader while tracking the predefinec
path and the follower maintaining the desired distance, the bearing angle an
the incidence angle. The quaternion components responses of the leader al
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X (m)

Figure 8. Leader-Follower Formation in First Path under IBS Controller Based
on Quaternion Representation.
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Figure 9. Leader Quaternions in First Path under IBS Controller Based on
QuaterniorRepresentation.
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Figure 10. Follower Quaternions in First Path under IBS Controller Based on
QuaterniorRepresentation.
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troller.
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Figure 12. Leader-Follower Formation in First Path under IBS Controller Based
on Quaternion Representation with Leader Disturbance Only.
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Figure 13. Leader-Follower Formation in First Path under iLQR and LQR Con-
trollers.
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Figure 14. Leader Quaternions in First Path under iLQR and LQR Controllers.
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Figure 15. Follower Quaternions in First Path under iLQR and LQR Controllers.

the follower in tracking the desired path are shown in Figures 14 and 15, re-
spectively. Figure 16 shows the distances between the leader and the followe
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Figure 16. The Distance between the Leader and the Follower under iLQR anc
LQR Controllers.

The error in using the iLQR controller was smaller than that in using LOR.
However, when the iLQR controller ran for five iterations, the response was
slightly improved.

In conclusion, it is obvious that the proposed iLQR controller maintained
the distance between the leader and the follower faster than LQR controller.

Conclusion

This chapter has presented the performance of applyin§thelBS and iLQR
controllers to the leader-follower formation control problem of quadrotors when
its dynamic model was derived based on unit quaternion. Akecontroller
was developed to reject the external disturbances and recover the model parar
eter uncertainties change. Then, its stability and robustness were analysed at
a set of corresponding conditions were given.

The IBS controller was developed based on BS control theory with adding
an integral action to minimise the steady state error which appeared when the B
controller was used for leader-follower formation problem. The main drawback
of the IBS controller is that its stability is guaranteed but the performance is not,
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and it has three coupling parameters to be tuned compared with a guarantee
stability and performance of th& ., controller. Another noteworthy drawback

of the IBS controller that was noticed in the current study is the considerable
overshoot in its response due to the effect of the integral parameter and higl
oscillations when external disturbances were applied to the system dynamics i
leader-follower formation.

The iLQR controller is essentially based on the LQR controller with an iter-
ation technique. It has a set of gains equal to the number of operating sample
by linearising the system in each sample of operation.

The controllers were tested in the MATLAB simulater. The simulation re-
sults show that the proposdd., controller achieved excellent performance
compared with those of IBS controller.

The proposed iLQR controller was based on finding a linearised system al
each time step of the operation, while the LQR controller was based on obtain:
ing a linearised system at the operating point (hovering point). The solutions
of the two controllers establish the potential of the proposed iLQR law by im-
proving the tracking accuracy and the speed of catching the desired path an
maintaining the distances between the leader and the follower compared witt
the LQR controller. The iLQR controller performed better than the LQR con-
troller, especially in quaternion components performance.

As a result, the proposed., controller indeed produced better control per-
formance than the IBS controller in all circumstances, and the iLQR controller
perform faster than LQR controller with less errors.
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Abstract

A generalized inverse of a given quaternion matrix (similarly, as for
complex matrices) exists for a larger class of matrices than the invertible
matrices. It has some of the properties of the usual inverse, and agrees
with the inverse when a given matrix happens to be invertible. There
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exist many different generalized inverses. In this chapter, we consider
determinantal representations of the Drazin and weighted Drazin inverses
over the quaternion skew field.

Due to the theory of column-row determinants recently introduced by
the author, we derive determinantal representations of the Drazin inverse
for both Hermitian and arbitrary matrices over the quaternion skew field.
Using obtained determinantal representations of the Drazin inverse we get
explicit representation formulas (analogs of Cramer’s rule) for the Drazin
inverse solutions of the quaternionic matrix equations AXB = D and,
consequently, AX = D, XB = D in both cases when A and B are
Hermitian and arbitrary, where A, B can be noninvertible matrices of
appropriate sizes. We obtain determinantal representations of solutions
of the differential quaternionic matrix equations, X’ + AX = B and
X’ + XA = B, where A is noninvertible as well.

Also, we obtain new determinantal representations of the W-weighted
Drazin inverse over the quaternion skew field. We give determinantal
representations of the W-weighted Drazin inverse by using previously
obtained determinantal representations of the Drazin inverse, the Moore-
Penrose inverse, and the limit representations of the W-weighted Drazin
inverse in some special case. Using these determinantal representations
of the W-weighted Drazin inverse, we derive explicit formulas for deter-
minantal representations of the W-weighted Drazin inverse solutions of
the quaternionic matrix equations WAWX = D, XWAW = D, and
W ;AW XW3;BW,; = D.

1. Introduction

Let R and C be the real and complex number fields, respectively. Throughout
the paper, we denote the set of all m X n matrices over the quaternion algebra

H = {ag + a1i + asj + ask | i* = j* = k* = —1, ag, a1, az, a3 € R}

by H™*", and by H"*™ the set of all m x n matrices over H with a rank 7.
Let M (n, H) be the ring of n x n quaternion matrices and I be the identity
matrix with the appropriate size. For A € H"*™, we denote by A*, rank A the
conjugate transpose (Hermitian adjoint) matrix and the rank of A. The matrix
A = (a;;) € H™*" is Hermitian if A* = A.

The definitions of the generalized inverse matrices can be extended to
quaternion matrices as follows.
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Definition 1.1. The Moore-Penrose inverse of A € H™*", denoted by At is
the unique matrix X € H"*"™ satisfying the following equations,

AXA = A; (1.1)

XAX = X; (1.2)
(AX)* = AX; (1.3)
(XA)* = XA. (1.4)

Definition 1.2. For A € H" " with k = Ind A the smallest positive number
such that rank A*T! = rank A¥, the Drazin inverse of A is defined to be the
unique matrix X that satisfying (1..2) and the following equations,

AX = XA; (1.5)
AFIX = AF, (1.6)

It is denoted by X = AP In particular, when Ind A = 1, then the matrix X is
called the group inverse and is denoted by X = AY.

If IndA = 0, then A is invertible, and AP = AT = A~1,

Cline and Greville [1] extended the Drazin inverse of a square matrix to
a rectangular matrix, which can be generalized to the quaternion algebra as
follows.

Definition 1.3. For A € H™*" and W € H"™™, the W-weighted Drazin
inverse of A with respect to W is the unique solution to equations,

(AW)FFIXW = (AW)*; (1.7)
XWAWX = X; (1.8)
AWX = XWA, (1.9)

where k = max{Ind(AW), Ind(WA)}. It is denoted by X = A4 w.

The problem of determinantal representation of generalized inverse matri-
ces only recently begun to be decided through the theory of column-row de-
terminants introduced in [2,3]. The theory of row and column determinants
develops the classical approach to a definition of a determinant as an alternat-
ing sum of products of elements of a quadratic matrix but with a predetermined
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order of factors in each summand of a determinant. A determinant of a ma-
trix with noncommutative elements is often called the noncommutative deter-
minant. Unlike other known noncommutative determinants such as determi-
nants of Dieudonné [4], Study [5], Moore [6,7], Chen [8], quasideterminants of
Gelfand-Retakh [9], the double determinant built on the theory of the column-
row determinants has properties similar to the usual determinant, in particular,
it can be expand along arbitrary rows and columns. This property is neces-
sary for determinantal representations of the inverse and generalized inverse
matrices. Determinantal representations of the Moore-Penrose inverse, the min-
imum norm least squares solutions of some quaternion matrix equations over
the quaternion skew-field have been obtained in [10, 11]. Determinantal repre-
sentations of an outer inverse Ag )S has introduced in [12,13] using column-row
determinants as well. Recall that an outer inverse of a matrix A over complex
field with prescribed range space 1" and null space S is a solution of (1..2) with
restrictions,
R(X)=T, N(X)=S.

Within the framework of the theory of column-row determinants Song [14] also
has gave a determinantal representation of the W-weighted Drazin inverse over
the quaternion skew-field using its characterization by an outer inverse Ag )S
But, in obtaining of this determinantal representation, auxiliary matrices that
different from A or its powers are needed. In this chapter, we shall obtain
new determinantal representations of the Drazin inverse and the W-weighted
Drazin inverse of A € H"™*" with respect to W € H"*™ by using only
their entries. These determinantal representations of the Drazin and W-weighted
Drazin inverse will be used for explicit determinantal representation formulas of
the Drazin and W-weighted Drazin inverse solutions of some quaternion matrix
equations.

The chapter is organized as follows. We start with some basic concepts and
results from the theory of row-column determinants and the theory of quater-
nion matrices in Section 2. In Section 3, we give the determinantal representa-
tions of the Drazin inverse of a Hermitian quaternion matrix in Subsection 3.1
and an arbitrary quaternion matrix in Subsection 3.2. In Section 4, we obtain
explicit representation formulas for the Drazin inverse solutions of quaternion
matrix equations AXB = D and, consequently, AX = D, and XB = D.
In Subsection 4.1, we consider the case when A, B are Hermitian, and they
are arbitrary in Subsection 4.1. In Section 4.3, we show numerical examples to
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illustrate the main results. In Section 5, we apply the obtained determinantal
representations of the Drazin inverse to solutions of differential matrix equa-
tions. In Subsection 5.1, we give a background for quaternion-valued differ-
ential equations. In Subsection 5.2, determinantal representations of solutions
of the differential matrix equations, X’ + AX = B and X’ + XA = B are
derived, where A € H"™ " is noninvertible. It is demonstrated in an exam-
ple in Subsection 5.3. In Section 6, we obtain determinantal representations of
the W-weighted Drazin inverse by using introduced above determinantal repre-
sentations of the Drazin inverse in Subsection 6.1, the Moore-Penrose inverse
in Subsection 6.2, and the limit representations of the W-weighted Drazin in-
verse in some special case in Subsection 6.3. In Subsection 6.4, we show a
numerical example to illustrate the main result. By using determinantal repre-
sentations of the W-weighted Drazin inverse obtained in the previous section,
we get explicit formulas for determinantal representations of the W-weighted
Drazin inverse solutions (analogs of Cramer’s rule) of some quaternion ma-
trix equations in Section 7. In Subsection 7.1, we consider the background of
the problem of Cramer’s rule for the W-weighted Drazin inverse solution. In
Subsection 7.2, we obtain explicit representation formulas of the W-weighted
Drazin inverse solutions (analogs of Cramer’s rule) of the quaternion matrix
equations WAWX = D, XWAW = D, and W; AW XW,BW; = D. In
Subsection 7.3, we give numerical examples to illustrate the main result.

Facts set forth in Sections 3 and 4 were partly published in [15], in Section
6 were published in [16] and in Section 7 were partly published in [17].

2. Preliminaries. Elements of the Theory of the Column
and Row Determinants

Suppose S, is the symmetric group on the set I,, = {1,...,n}. Through the
chapter, we denote i = 1,...,nbyi=1,n.

Definition 2.1. The i-th row determinant of A = (a;;) € M (n, H) is defined
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forall i = 1,n by putting
rdetiA =

Z (=" (a“kl Qi iy 41+ 'aik1+zli) . '(aikrierrl - 'aierrlrikr)?
O'ESn

0 = (Likytky41 - - Tk y) (ko fhatd - - - Thotly) - - (i Tt 1 - Tk, ) 5
with conditions iy, < ig, < ... <1t andip, < ig,ysfort = 2. rands =1,1,.
Definition 2.2. The j-th column determinant of A = (a;;) € M (n,H) is de-
fined for all j = 1, n by putting

cdet; A =

Z (=™ (a’jkrjerrlr - 'ajerrlikr) . '(ajjk1+l1 < Qg 10k ajklj)7
TES’n
T = (jkr+lr . 'jkr+1jkr) s (jk2+l2 e 'jk2+1jk2) (jk1+l1 e 'jk1+1jk1j) )

with conditions, jg, < jrs < ... < Jjk, and jg, < jg,+s fort = 2,7 and
s = 1, lt.

Suppose A%/ denotes the submatrix of A obtained by deleting both the i-th
row and the j-th column. Let a ; be the j-th column and a; be the i-th row of
A. Suppose A ; (b) denotes the matrix obtained from A by replacing its j-th
column with the column-vector b, and A ;. (b) denotes the matrix obtained from
A by replacing its i-th row with the row-vector b.

We note some properties of column and row determinants of a quaternion
matrix A = (a;j), where i € I, j € Jy and I, = J, = {1,...,n}. These
properties completely have been proved in [2, 3].

Proposition 2.1. Ifb € H, thenrdet;A; (b-a;) =b-rdet;A foralli=1,n.

Proposition 2.2. Ifb € H, thencdet; A j (a; - b) = cdet; A-bforall j = 1,n.
Proposition 2.3. Iffor A € M (n, H) there exists t € I,, such that a;; = bj+c;
forall j = 1,n, then

rdet; A = rdet; Ay (b) 4 rdet; Ay (c),

cdet; A = cdet; Ay (b) + cdet; Ay (c),

where b = (by,...,b,) € H'*", ¢ = (¢1,...,¢,) € HY™, i =T, n.
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Proposition 2.4. Iffor A € M (n, H) there existst € J,, suchthat a;y = b;+c;
forall i =1,n, then

rdet; A =rdet; A ;(b) +rdet; A ;(c),

cdet; A = cdet; A 4 (b) + cdet; A 4 (c),

where b= (by,...,b,)T € " ¢ = (c1,...,c,)T e ™, j =T n.

Proposition 2.5. If A* is the Hermitian adjoint matrix of A € M (n, H), then
rdet; A* = cdet; A foralli =1,n.

The following lemmas enable us to expand rdet; A by cofactors along the
i-th row and cdet ;A along the j-th column respectively for all 7, j = 1, n.

Lemma 2.3. Let R;; be the ij-th right cofactor of A € M (n,H), that is,
n

rdet; A = ) a;; - Rijforalli=1,n Then
j=1

_ Qi (o N il h— J,if 1>
Ry =4 TrdewAG (@), 177, k_{j—l, if i<jo QD)
rdety A% i=7, k=min{l, \ i},

where AZ; (a.;) is obtained from A by replacing the j-th column with the i-th
column, and then by deleting both the i-th row and column.

Lemma 2.4. Let L;; be the ij-th left cofactor of A € M (n,H), that is,

n

cdet; A = Z Lij-a;jforall j =1,n. Then

=1
B 9i(a . Rz iof 7>

Li; = cdety, A7 (aj.), @], k_{i—l, if §<i (2.2)
cdet, A%, i=j, k=min{J, \ j},

where Af] (aj.) is obtained from A by replacing the i-th row with the j-th row,
and then by deleting both the j-th row and column.

The following theorem has a key value in the theory of column-row deter-
minants.

Theorem 2.5. If A € M (n, H) is Hermitian, then rdet1 A = - - - = rdet, A =
cdetiA = -+ - = cdet, A € R.
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Remark 2.6. Since all column and row determinants of a Hermitian matrix
over H are equal, we can define the determinant of Hermitian A € M (n, H) by
putting for alli = 1, n,

det A := rdet; A = cdet; A.

Properties of the determinant of a Hermitian matrix is completely explored
in [3] by its row and column determinants. They can be summarized by the
following theorems.

Theorem 2.7. [f the i-th row of a Hermitian matrix A € M (n, H) is replaced
with a left linear combination of its other rows, i.e. a; = ci1a;, + ...+ cpa;, ,
where ¢; € H foralll = 1,k and i,1; € I, then

rdet; A; (Clail, +...+ ckaik,) = cdet; A;. (Clail, +...+ ckaik,) =0.

Theorem 2.8. If the j-th column of a Hermitian matrix A € M (n,H) is
replaced with a right linear combination of its other columns, i.e. a; =
ajci+...+aj.cy wherecy € Hforalll =1,k and j, 5, € Jy, then

cdetj A.j (a,jl c1+...+ a,jkck) = rdetj A.j (a,jl c1+...+ a,jkck) =0.

The following theorem on determinantal representations of an inverse ma-
trix of Hermitian follows directly from these properties.

Theorem 2.9. If A € M (n, H) is Hermitian, and det A # 0, then there exists
a unique right inverse matrix (RA) ™! and a unique left inverse matrix (LA)™*
of A, where (RA)f1 = (LA)f1 =: A~Y, and they possess the following
determinantal representations, respectively,

Ri1 Ror -+ Rm
rA =g [T L ey
Ri, Ron - R
Ly Loy -+ Lm
S 7Y A FCY
Lin Low --- Lpn

where R;j, L;; are the right (2.1) and left (2.2) ij-th cofactors of A for all
1,5 =1,n.
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Remark 2.10. If det A = 0, we say that a Hermitian quaternion matrix A €
M (n, H) is singular because, in this case, A is noninvertible.

Since principal submatrices of a Hermitian matrix are Hermitian, the prin-
cipal minor can be defined as the determinant of its principal submatrix by anal-
ogy to the commutative case. In [3], we have introduced the rank by principle
minors that is the maximal order of a nonzero principal minor of a Hermitian
matrix. The following theorem determines a relationship between it and the col-
umn rank of a matrix defining as ceiling amount of right-linearly independent
columns, and the row rank defining as ceiling amount of left-linearly indepen-
dent rows.

Theorem 2.11. If A € M (n, H) is Hermitian, then its rank by principal minors
are equal to its column and row ranks.

Due to the non-commutativity of quaternions, there are two types of eigen-
values. A quaternion ) is said to be a right eigenvalue of A € M (n,H) if
A - x =x- A, and A is a left eigenvalue if A - x = X - x for some nonzero
quaternion column-vector x € H".

The theory on the left eigenvalues of quaternion matrices has been investi-
gated, in particular, in [18,19,20]. The theory on the right eigenvalues of quater-
nion matrices is more developed. In particular, we note [21,23,24,25,26,27].

Proposition 2.6. [25] Let A € M (n, H) be Hermitian. Then A has exactly n
real right eigenvalues.

Right and left eigenvalues are in general unrelated [27] but it is not for Her-
mitian matrices. Suppose A € M (n, H) is Hermitian and A € R is its right
eigenvalue, then A - x = x- A = X\ - x. This means that all right eigenvalues
of a Hermitian matrix are its left eigenvalues as well. For real left eigenvalues,
A € R, the matrix AXI — A is Hermitian.

Definition 2.12. If A\ € R, then for a Hermitian matrix A the polynomial
pA (A) = det (AI — A) is said to be the characteristic polynomial of A.

The roots of the characteristic polynomial of a Hermitian matrix are its real
left eigenvalues which are its right eigenvalues as well. We can prove the fol-
lowing theorem by analogy to the commutative case (see, e.g. [28]).

Theorem 2.13. If A € M (n, H) is Hermitian, then pa (\) = A" — d;\"~1 +
doA""2 — .. .+ (—=1)" d,, where dy, is the sum of principle minors of A of order
k,1<k<n, andd, = det A.
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3. Determinantal Representations of the Drazin Inverse

As one of the important types of generalized inverses of matrices, the Drazin
inverses and their applications have well been examined in the literature (see,
e.g., [29,30,31,32,33,34]). In [35], Stanimirovi¢ and Djordjevi¢ have intro-
duced a determinantal representation of the Drazin inverse of a complex matrix
based on its full-rank representation. In [36], we obtain determinantal represen-
tations of the Drazin inverse of a complex matrix used its limit representation. It
allowed to obtain the analogs of Cramer’s rule for the Drazin inverse solutions
of some matrix equations. In this chapter we extend studies conducted in [36]
from the complex field to the quaternion skew field.

3.1. Analogues of the Classical Adjoint Matrix for the Drazin
Inverse of a Hermitian Matrix

For Hermitian matrices, we apply the method which consists of the theorem
on the limit representation of the Drazin inverse, lemmas on rank of matrices
and on characteristic polynomial. This method at first has been used in [36],
afterwards in [37,38]. By analogy to [39] the following theorem on the limit
representation of the quaternion Drazin inverse can be proved.

Theorem 3.1. If A € H"*"™ with Ind A = k, then
—1 —1
AP = lim ()\In n A’f“) A¥ = lim A ()\In n A’f“) ,

where A € Ry, and R is a set of the real positive numbers.

(™) and 2™

Denote by a; i

tively.

the j-th column and the ¢-th row of A™, respec-

Lemma 3.2. If A € M (n, H) with Ind A = k, then

rank (A’”l)'i (a??) < rank (AkH) . 3.1
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Affl <a§

)

Proof. The matrix Affl <a§k)

; alsa.(g’;)

ajy

n

(k)
Z Anslgy
s=1

) can be represented as follows

n

k
Z alsa.(sn)
s=1

o

n
k
Z Gns a.(sn)
s=1

Let Py (—a;;) € H™ ™, (I # i), be a matrix with —a;; in the (I, 7)-entry,
1 in all diagonal entries, and O in others. This is a matrix of an elementary

transformation. It follows that

5 arsaly) 5 arsaly)
s=j sj
D | L T N I
14 . ..
Z ansag];) Z ansagﬁ)
s7j s7j

The above obtained matrix A has the following factorization.

a 0 a k k k
Sl E
A=|l0 ... 1 0 A1 @22 @2n
G 0 ag) \an @y i
Denote the first matrix by
ar 0 ain
A= 0 1 0 |i—th
anl 0 Ann
j—th

The matrix A; is obtained from A by replacing all entries of the i-th row and
the j-th column with zeroes except for 1 in the (4, j)-entry. Since elementary
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.
min {rank AF rank A} By rank A, > rank A, the proof is completed. [

transformations of a matrix do not change its rank, then rank Affl <a<k)> <

The next lemma is proved similarly.

Lemma 33. If A € M (n, H) with Ind A = k, then rank (A1), (a{")) <
rank (AFT1)

We shall use the following notations. Let o = {aq,...,ax} C
{1,...,m} and B8 = {01,...,0k} C {1,...,n} be subsets of the order
1 < k < min{m,n}. By A denote the submatrix of A determined
by rows indexed by o and columns indexed by 3. Then A& denotes the
principal submatrix determined by the rows and columns indexed by a. If
A € M(n,H) is Hermitian, then by |A%| denote the corresponding prin-
cipal minor of det A. For 1 < k < n, the collection of strictly increas-
ing sequences of k integers chosen from {1,...,n} is denoted by Ly, :=
{a:a=(a1,...,0), 1 <a; <...<ar <n}. Forfixedi € aand j € f3,
let I, p{i} ={a:a€Ll,y,ical, J {j}:={B:8€Lnjecp}

Analogues of the characteristic polynomial are considered in the following
two lemmas.

Lemma 34. If A € M (n, H) is Hermitian with Ind A = k and X € R, then

n

.1

cdet; ()\I + AkH) (a??) = cgij))\”*l + cgj))\”*Q +...+ c(ij), (3.2)

e 9 =i, (A1) (o)

i) = 3 cdeti((A’““) ,(Eﬂ%))g
BEJs, n{i} !

foralls=1,n—-1,4,7=1,n.

Proof. Denote by b_; the i-th column of A*T! =: (bij), «n- Consider the
Hermitian matrix (AI+ A*t1) (b ;) € H™". It differs from (AT + A**1)

in an entry b;;. Taking into account Theorem 2.13, we obtain

det ()\I + A’f“) (b)) =d AN h dAN2 kL ko d,,  (33)

.1
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where ds = > | (Ak+1)g| is the sum of all principal minors of order
BETs, nii}
s that contain the i-th column for all s = 1,n—1 and d,, = det (A’”l).
> a®ay
11
1
2 a;’;) Wi k k
Consequently, we have b ; = l = ZaFl)ali, where a.(l) is
: l
k
Z aiﬂ)ali
1

the {-th column of A* for all [ = T, n. Due to Theorem 2.5, Lemma 2.4 and
Proposition 2.2, we obtain on the one hand

det ()\I n A’f“) (b)) = cdet, ()\I n A’f“) (b.;) =

N

> cdet; (AL+ A1) (aa;) =

l
zl: cdet; (AL+ A1) (a) - an. G4

On the other hand having changed the order of summation, forall s = 1,n—1
we have

do= > det (A’f“)gz 3 cdety (A’f+1

BEJTs, n{i} B€Js, n{i}

Z chet ((AkH) (a(’;)alz>

ﬂeJS n{l} l

Z Z cdet; ((AkH) . (aF’;)

l ﬂeJS n{l}

N~—
N———

By substituting (3.4) and (3.5) in (3.3), and equating factors at a;; when ! = j,
we obtain (3.2). |

The following lemma can be proved similarly.

Lemma 3.5. If A € M (n, H) is Hermitian with Ind A = k and X € R, then

rdetj()\I+A’“H)j, (al("k)) _ rgij))\nfl _+_r;ij))\n72 T+ “+rgj)7
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where 17 = rdet; (AF1);. (al(-k)) and ) =
> rdet; ((A’”l)j, (a(-k )) “foralls=1,n—landi,j=1,n.

aels,n{j}

Theorem 3.6. If A € M (n, H) is Hermitian with Ind A = k andrank A*+1 =

rank A¥ = 1, then the Drazin inverse AP = (aﬁ) € H"™*"™ possess the

following determinantal representations:

S cdet; ((Akﬂ) ¥ (akﬂ>> g

ﬁeJr,ni
D= b , (3.6)
S|k
ﬂeJr,n
or
S rdet; (A1), @) g
D aelr,n{j}
D _ ) 3.7
> AR g 7
aEIr,n
Proof. At first we prove (3.6). By Theorem 3.1, AP =

;\in%) ()\In+Ak+1)71 AF. The matrix (AI+AFY) e H™™ is a full-

rank Hermitian matrix. Taking into account Theorem 2.9, it has an inverse
which can be represented as a left inverse,

L1 Loy ... Lp
-1 1 L L ... L
AT Ak+1> _ 12 Loz n2
(Ar+ eI+ AR [ ..
Lln L2n s Lnn

where L;; is a left ij-th cofactor of a matrix AI + A**!. Then, we have

(Ar+ Ak Ak

Z LSlasl Z L51a52 Z slasn
s=1 s=1 s=1
n n n
_ 1 > Loaly Y Lialy > L
det (AL + AF+T) | =1 s=1 s=1
n n
> Loal) 3 Lyaly) z Lonalt)
s=1 s= s=1
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By using the definition of a left cofactor, we obtain

cdet (AI+AR) (a) cdet; AI+AR1)  (al))
det(AI+AK+1) e det(,\1+Ak+1)
AP = lim .
AU cdet (AT AR L (af >) cdet, (AL+ART) (al))
det(,\1+Ak+1) det(,\1+Ak+1)
(3.8)
By Theorem 2.13, we have
det (AL 4+ A1) = X" 4+ ) A" + doA" 2 + ..+ d,
where d; = ) ) (Ak“) g) is a sum of principal minors of A¥*! of order s
BEJTs,n
forall s =1,n — 1 and d,, = det A**1,
Since rank A**! = rank A¥ = r, thend, = d,_1 = ... = dp11 = 0. It

follows that det ()\I + Ak“) =N+ AN A2 A AT
Using (3.2), we have
cdet; ()\I I Ak+1> | (a(< )) ( 7) \n—1 (ij))\n72 U ()

.J n

forall i,j = I,n, where /) = 3 cdet; ((A’Hl).i (é?)) g for all
BEJs,ni{i}

s=1,n—1and cgj) = cdet; (Ak“)'i (a??). We shall prove that c,(jj) =0,
when k > r+ 1foralli,j = 1,n.
Since by Lemma 3.2, (Ak“).i (a“ﬂ) < r, then the matrix

-J

(Ak“)'i (a??) has no more r right-linearly independent columns. Consider
((Ak“) b (a?)) g, when 3 € J,,{i}. This is a principal submatrix of

(Ak“) p (a??) of order s > r + 1. Deleting both its i-th row and column, we

obtain a principal submatrix of order s — 1 of A**!1. We denote it by M. The
following cases are possible.

o Lets =7+ 1 and det M # 0. In this case all columns of M are right-
linearly independent. The addition of all of them on one coordinate to

columns of ((Ak“)'i (a&k )>> g keeps their right-linear independence.
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J
column is the right linear combination of its basis columns. From this by

Theorem 2.8, we get cdet; ((Ak“) py (a?)) g =0,when g € J, ,{i}
and s =r+ 1.

Hence, they are basis in the matrix ((Ak“) y (a@)) g, and the i-th

e If s =r+1anddet M = 0, then p, (p < s), columns are basis in M
and in (Ak“) .(a(k)

A\

cdet; ((Ak“) y (a(k)>> g = ( as well.

J

) g So, by Theorems 2.11 and 2.8 we obtain

o If s > r + 1, then from Theorem 2.11 it follows that detM =
0 and p, (p < 7r), columns are basis in the both matrices M

and ((Ak“)'i (a?)) g Therefor, by Theorem 2.8, we have

cdet; ((Ak“) y (a?)) g =0.

Thus, in all cases, cdet; ((A’”l) y (a??)) g = 0, when § € J,,{i} and

r+1<s < n.Fromhere,ifr + 1 < s < n, then

= X () (58)) =0

B€Js,n{i}

and V) = cdet; (Ak“)'i (a??) =0foralli,j =1,n.

Hence, cdet; ()\I+ Ak“)'i (a?’?) = cgij))\”*l + céij))\”*Q + ...+
cﬁfj A" for all i,7 = 1,n. By substituting these values in the matrix from
(3.8), we obtain

cgll>)\"’1+...+c£11))\"*r cgln>)\"*1+...+c£1n>)\"’r
D A pdi A1 fd AT U AN d AT I d AT
AY = lim .. o =
A—0
- cgn1>)\"’1+...+c£n1>)\"*r cgnn>)\"*1+...+c£nn>)\"*r
AN fd A1 fd AT T A d A L d AT
(11) (1n)
Cr Cr ~
T . T
c£n1> C7(Nnn)
T Ta
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where o7 = ﬂegn{i}cdeti((A’““).i(a.(f)))g and d, =
3 )(Ak+1) g)
BEJTr, n

Thus, we obtained the determinantal representation of A" by (3.6).
The determinantal representation of AP by (3.7) can be proved similarly.
O

In the following corollaries we introduce determinantal representations of
the group inverse A9 and the projection matrices A” A and A AP, respectively.

Corollary 3.1. If IndA = 1 and rank A? = rank A = r < n for a Hermi-

tian matrix A € H" ", then the group inverse A9 = (a%) possess the
nxn

following determinantal representations:

> cdet; ((A2) |, (a)

g — BEJr,n{i}

> o|ang

BEJIr, n

> rdet; ((AQ)j.(ai.)) a

g _ aelr,n{j}

> (A%

aEIr, n

or

Proof. The proof follows immediately from Theorem 3.6 in viewof k = 1. [J

Corollary 3.2. If IndA = k and rank A¥*! = rank A*¥ = r < n fora
Hermitian matrix A € H™ ", then

> cdeti< Ak+1 (a( +1) ))
ADA — | BETentd (3.9)
k1) B ’ '

5 |l
nxn
and
> rdet; (A (@) g
D ae[r,n{j}
AL > @) (340
aEIr,n v

Complimentary Contributor Copy



218 Ivan Kyrchei

Proof. At first we prove (3.9). Let APA = (vij)nxn. Using (3.6) for all
i,j = 1,n, we have

Vij = Z QEJTE’:"{Z'} edets ((Akﬂ) i (aF;;))) 5

. b ‘(Ak+1)g‘ TQsj =
BEJIr, n
> > cdet; ( (AR (a( ) asj)) > cdety ( (AFFT) (a(kH)))
BEJr, ni{i} s ﬁEJr, n{i}
> [ar) g > @ g
BEJIr, n BEJIr, n

By analogy can be proved (3.10), using the determinantal representation of the
Drazin inverse by (3.7). |

32. Determinantal Representations of the Drazin Inverse for an
Arbitrary Matrix

For an arbitrary matrix A € M (n,H) with IndA = k and rank A**! =
rank A¥ = 7, we can not apply the method proposed for Hermitian matrices
primarily because the lemma on the characteristic polynomial for an arbitrary
quaternion matrix is not possible in general. We shall use a basic equality on the
Drazin inverse and determinantal representations of the Moore-Penrose inverse
by the following proposition and theorem, respectively.

Proposition 3.1. [30] If Ind(A) = k, then
AD _ Ak(A2k+1)+Ak.
Theorem 3.7. [10] If A € H™ ™, then the Moore-Penrose inverse AT =

+ nxXm H H H .
(ai j> cH possess the following determinantal representations:

> cdet; ((A*A).i (a*]>> g

of = pE S nii} - , (.11)
> |ara)g)
ﬂeJr, n
or N N
IZ o rdet; ((AA"); (aj)) o
+ aclrm)
af; = _ , (3.12)
J ; I(AA*) ¢
ac ,m
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foralli=1,n,5=1m.
Therefore, an entry of the Drazin inverse of A € M (n, H) is
k+1)\ T (k
ZZ Qi ( t? H) aij) (.13)
s=1 t=1

for all i, j = 1,n. Denote by &4 the s-th column of (AZFF1)*Ak —. A =
. *

(Gij) € H™ ™ for all s = 1, n. It follows from ) | (a,(zkﬂ)) ai’;) = a jand

(3.11) that )

> (a0l -

s=1
n > Cdett<<(A2k+1) A2k+1> ( 2k+1> )
Z BEJr, n{t}

p S [(A2kH1)* (A2KHD) ﬂ’ 8
ﬂeJr,n ﬂ
Y cdety ((A2k+1)* (AZkH1) t(é'j)> g
BeJr, n{t} '

S ’(A2k+1)* (A2k+1) g’
BEJr,n

So, the Drazin inverse A" possess the following determinantal representation,

Salf) X cdet, (M%) (%) (@) ]

op = L PNl ' (3.14)

v 3 (A2k+1)*(A2k+1)g) ’ '
ﬂeJr,n

foralli,j =1,n.
Denote by &;. the t-th row of AF(AZF1)* = A = (a;;) € H™™ for all

N *
t =T, Itfollows from ay3” (af?*)" = & and (3.11) that
t
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n n > rdets ((A%Jrl (A%H)*) (aka+1>) ) @
Z“W (a§2k+1))+ _ a(m.aen, n{s} s
oA = > [(AZRFL(A2RH1)T) g
ae}r,n
> vder, (A% (A%4)7) (a)) 2
a€ly n{s} .5
> AT (AT g
ae}r,n

Therefore, the Drazin inverse AP possess the following determinantal repre-

sentation,
i ( Z rdets <<A2k+1 (A2k+1)*> (éz )) g) ai’;)
D s=1 \a€l, n{s} -8
dij = S }(A2k+1 (A2k+1)*) g} , (3.15)

aEIr, n
for all i, j = 1, n. Thus, we have proved the following theorem.

Theorem 3.8. If A € M (n, H) with Ind A = k and rank A*T! = rank A% =
7, then the Drazin inverse AP possess the determinantal representations (3.14)
and (3.15).

Using obtained determinantal representations (3.14) and (3.15), we have the
following corollaries. Their proofs are similarly to the proofs of Corollaries ??
and ??, respectively.

Corollary3.3. If A € M (n, H) with Ind A = 1 andrank A? = rank A? = r,

g

then the group inverse A9 = (%’j) possess the following determinantal
nxn

representations

Saq Y odet; (A% (A%, (a) "

g =1 peln{t}
> [a%) (A%

)

s=1 \a€l; n{s}

v > [(A%(A%)) g ’

aEIr, n

5 ( S ety (A (A7), (a0) g) »
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foralli,j =1,n.
Corollary 3.4. If A € M (n, H) with Ind A = k and rank A**! = rank A* =

r, then

i ( S rdety <<A2k+1 (A2k+1)*> (éi,)> g) ai’;ﬂ)
ADA — s=1 \a€l; n{s} S
S ‘(A2k+1 (A2k+1)*) g‘ ’
aEIr,n
and
i az('tk+1) Z cdet, ((A2k+1)* (A2k+1).t (é.j)> g
AAD — t=1 BeJr n{t}
S )(A2k+1)* (A2k+1) g)
ﬂeJr,n

where Ak(A2k+1)* — A= (aij) and (A2k+1)*Ak _ A = (éij)-

4. Cramer’s Rule of the Drazin Inverse Solutions of
Some Matrix Equations

One of the main applications of the determinantal representation of an inverse
matrix by the classical adjoint matrix is the Cramer rule. In this section we shall
show that the obtained determinantal representations give the exact analogues
of Cramer’s rule for the Drazin inverse solutions of some matrix equations.

For an arbitrary matrix over the quaternion skew field, A € H"™*", we
denote by

e R, (A)={yeH": y=Ax, x € H"}, the column right space of A,
e N.(A)={y e H": Ax = 0}, the right null space of A,

e Ri(A)={yeH": y=xA, x € H"}, the column left space of A,
e N.(A)={y e H": xA = 0}, the left null space of A.
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Consider a matrix equation
AXB =D, 4.1)

where A € H"", B € H™*™, D € H™™ are given, and X € H"*™ is
unknown. Let Ind A = ky and IndB = ks.
It’s well known (see, e.g., [12]) that the equation (4.1) with restrictions

R.(X) C R (A™), N,.(X) D N, (B*?),
Ri(X) C Ri(AM), Ni(X) D Ni(B*2),

has a unique solution X = APDBP.

4.1. The Case of Hermitian Matrices

Denote AK DB* =: D = (d;;) € H™™,

Theorem 4.1. If A, B are Hermitian, rank AFtl — rank AR = r1 < n for
A € H"™", gnd rank BF2t1 = rank B*F2 = 5 < m for B € H™*™, then, for
the Drazin inverse solution X = APDBP = (xz,;) € H™™ of (4.1), we have

S cdet; (AR (d%))ﬂ

i B
P U : 42)
S [k B
BETrn a€lry m
or
> wdety (B (d2)) &
ae[rz,’m{j} .
Tij = ) 4.3)
> |@anmg s e
BETrn a€lrym
where
B= rdetj<<Bk2+1>4 (&l,)) cH™!, [ =T,n, (44)
ae[rz,m{j} > «
NN
d? = cdet; ((APHY) (d, eH™™, t=1,m, (4.5)
5 (), 0)]

are the column vector and the row vector, respectively. &Z and & j are the i-th

row and the j-th column off)for alli=1,nj=1,m.
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Proof. An entry of the Drazin inverse solution X = APDB? = (z;;) €

anm iS
T = (Z agdts> b7 (4.6)
s=1 t=1
forall? = 1,n, j = 1, m, where by Theorem 3.6
T e (a8, () 4
BETr, n{i} '
g = ! s , “4.7)
> |am g
ﬂeJ’I‘l,n
S rdet; ((BR),. (b)) &
D ae[rg,m{j}
= > B | @9
aEIr2,m

Denote by d, the s-th column of A D =: D = (JU) € H™*™ for all
m. It follows from aF’fl)dts =d , that
t

S =

> cdet; ( A’“1Jr1 (a%”))

- "\ peIrn
S afd =y = iy =
t=1 t=1 ‘ A’“1Jr1 ‘
ﬁEJrl n
> cdet; ((A’“H) ; (aFf”)) g ~ds > cdet; ((A ’“H) ; (d;))g
BETry, n{i} t=1 :  BETry w{i} '
= Tl ST
BEJIr,n BEJ ri,n

Suppose e and e are respectively the unit row-vector and the unit column-
vector whose components are 0, except the s-th components, which are 1. Sub-
stituting (4.7) and (4.8) in (4.6), we obtain

> ‘ cdet; ((A’“H) L (dAs)) g > rdet; ((Bk2+1)j.(bgl.v2>)) i

Z BEJry, n{i} a€lry, mi{s}

e =

T H ST > (B g
BETry n a€lrym

Since

n m

A A (k2

d,= g e dis, b S, bsl €, g dts Sl —dtb
t=1

=1 s=1
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then we have

Tij =
ST Y cdets (AR (e)) fhiblY S rdet; (BY ), (er) &
s=11=1t=18€Jp, n{i} ’ a€lry m{j} _
> |@anm gy @l
BEJTry, n a€lry,m
n m ~
X Y cdet; (AR (en) Gdu Y rdet; (BRt); (er)) &
tle:lﬂejrl,n{i} OZEITQ,m{j}
> (ARG |(BRet) g
ﬂEJTl,n ae]rg,*m
4.9)
Denote by
A
dy =
- B n B~
cdet; (AR d = det; (AR d
Codets ((AMY) (dy)) =30 3 eders((4M7) (o) du
BETry, n{i} t=1 Bedr,  nfi}

the [-th component of a row-vector dﬁ = (d{-}, . dlf-}n) for alll = 1, m. Sub-
stituting it in (4.9), we have

3 dﬁ > rdet; ((Bkﬁl)j.(el.))z
=1 aEIrg,m{j}

DR CCEOY
BEJ’I‘l,n

xij =

> (B

aEITQ,'m

m
Since > dfe;. = dA, then it follows (4.3).
=1

If we denote by

Bemddn Y wdery (B ) = Y ety (B, @)
=1

DtEIrZ,m{j} aEITz,m{j}

the ¢-th component of a column-vector d?‘j = (d]f‘j7 ey dEj)T forallt = 1,n
and substitute it in (4.9), we obtain

S Y cdet; (AR (e ) dB
t=1BeJr; n{i} ' g

> |(ARH)S
BEJ’I‘l,n

xij =

> (BRI

aEITQ,m
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n
Since ) e (dp; = dB, then it follows (4.2). O
t=1

Consider a matrix equation
AX =D, (4.10)

where A € H™*", D € H™ ™ are given, A is Hermitian, and X € H"*™ is
unknown. Let Ind A = k. We denote AFD =: D = (d i) € H™ ™. Putting
B =1Iin (4.1) we evidently obtain the following corollary.

Corollary 4.1. If rank A**! = rank A* = r < n for Hermitian A € H"*",
then for the Drazin inverse solution X = APD = (z;;) of (4.10), we have

ST cdet; ((Ak“) y (&]>> g

gy = P& etd - , .11)
3 }(Ak+1) [3}
ﬂeJr, n
where (Sl,j is the j-th column off)forj =1,m.
Consider a matrix equation
XB =D, (4.12)

where B € H™ ™, D € H™ ™ are given, B is Hermitian and X € H™*™ is
unknown. Let IndB = k and denote DB* =: D = (d;;) € H" ™. Putting
A =Tin (4.1) we evidently obtain the following corollary.

Corollary 4.2. If rank B*¥t! = rank B* = r < n for Hermitian B € H" ™,
then for the Drazin inverse solution X = DBP =: (xi5) of (4.12), we have for
i=1,nj=1m

5> rdet; (B, (di)) &
gy = 2Efrmid} ' (4.13)
K > 1Bl ' '

aEIr, m

where d;_is the i-th row of D fori =1, n.
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42. The Case of Arbitrary Matrices

Using the determinantal representations (3.14) for arbitrary A € H"*" and
(3.15) for arbitrary B € H™*™, we obtain the following theorem and corollar-

ies by analogy to Theorem 4.1, Corollaries 4.1 and 4.2, respectively.
Denote (AZFi+1)* AkiDBFR2 (B2F2+1)* = D = (d;;) € H™™.

Theorem 4.2. If rank A*1t! = rank A"t = r; < n for VA € H™", and
rank B2t = rank B = 7y < m for VB € H™ ™, then for the Drazin
inverse solution X = APDBP = (z;;) € H"™™ of (4.1), we have

Saf) S cdet (A1) (%0 (aB)) ]

t=1 BeJry, n{t}
Ti5 —
J Z )(A2k1+1)* (A2k1+1) g) Z }(B2k2+1 (BQk2+1)*) g}
ﬁeJrl,n OtEIrg,m
4.14)
or
> ( S ety (B4 (B%1)) (ah)) g) L
Tii = s=1 \a€lry, m{s} 8
ij > }(A2k1+1)*(A2k1+1)g Y |(BYet (B2k2+1)*)g}7
ﬁeJrl,n OtEIrg,m
4.15)
where
d® = 3 det, (B2 (B*:)7)  (d,)) o | o) | e m,
(S5 e (@) @))z) )
(4.16)
and
df = [ Salf) 30 cde( (A1) (A2H) (@) ]em,
t=1 BEJIry, n{t} '
“4.17)

and &p,, (;l,q are the p-th row and the q-th column of D, respectively, for all
g=1,np=1m.

Corollary 4.3. Ifrank A**! = rank A¥ = r < n for A € H"™™, then, for the
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Drazin inverse solution X = APD = (x;;) of (4.10), we have
i az('tk) T cdety ((A2k+1)* (A2k+1)'t (&,j>> g

3 ’(A2k+1)* (A2k+1) g’
BEJr,n

. (4.18)

where (Sl,j is the j-th column of D = (A2 ARD forallj = T,m,i =1, n.

Corollary 4.4. If rank B¥*! = rank B* = r < m for B € H™ ™, then, for
the Drazin inverse solution X = DBP =: (z;;) of (4.12), we have

g ( T rdet, <<B2k+1 (BQk+1)*> ) (&J) g> ai’;)

B s=1 \a€l m{s}
Tij = > [(B2FH (B2 g , (4.19)
aEIr,m
where d;. is the i-th row of D = DBF2 (B2t 1)* forall i =T, n, j = 1, m.
4.3. Examples
In this section, we give examples to illustrate our results.
1. Let us consider the matrix equation
AXB =D, (4.20)
where
1 k —i 1 1 1
A=|-k 2 ,Bz(. ),D—kl
. -1 1
i —5 1 1 3
3 4k =3
Since A? = —4k 6 47 |, detA = det A? = 0, and
3 —47 3
1 k 3 4k
det (—k 2) =1, det (—4k 6 ) = 2, then, by Theorem 2.11, Ind A =1
and r; = rank A = 2. Similarly, since B2 = (—221 222), then IndB =1

and ro = rank B = 1.
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Because A and B are Hermitian, we shall find the Drazin inverse solution
X = (f;) of (4.20) by the equations (4.2)-(4.4). We have Y |(B?)g| =

acly o
2+2=4,

N 3 4k 3 -3 6 45\
> )(A)ﬂ)_det<_4k 6)+det<3i g )tdet{ . 5)=4
BEJ2, 3
Since

_ 1—1 141
D=ADB=|—-i+j5 1-k |,
147 —1+42
then by (4.4)
dB = | 3 wdet; ((B7), (4)) | emt, 1=1,23 j=12
OLEILQ{j}

Thus, we have

1—i 1+
dB=(—-i+j], aB=|1-%|.
1+ —1+i

1—¢ 4k -3
(A%) (@B)={—i+j 6 4j],
14+¢ —457 3
and finally we obtain
> cdet((A%) | (d5)) 5

d _ BeJ2 {1}

T =
>

BEJ23

1 1—14 4k 1—14¢ -3¢ _3—i+2
E(Cdet1<—i+j 6)+Cdet1<1+z’ 3))_78 .

(A25] > (B2

a€11,2
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Similarly,

)

1 1+4 4k 1447 -3¢ 1+3i—2k
d _
= (cdet1< g 6)+Cdet1 1+i 3 ))

1 3 1—1 14+9 4 -3t —j +4k
xglz— (cdetQ (—4k i+ ) + cde t1< 1—|—7,] ?')]>> j ,

—k 45 )) 3+4j+k

)

-1+

1 3 1 6 1+3@+2k
xg1:—<cdet2<3i 1+)+cdet2< 4 1_H)) _
6
4j

1 3 141 1-— —3+z+2j
d
Tgy = 16 (cdetQ (32 14 )+Cdet2< _1+2))
So,
1 3—14+25 1+3¢—2k
Xl=—| —3i—j+4k 3+4j+k
1+3i+2k —-3+i+2j

is the Drazin inverse solution of (4.20).
2. Let us consider the matrix equation

AX =D, (4.21)
where
i 7 k 1 4
A=|1 -k 57],D=1k 1
1 0 1 1
—14+j+k —i+Ek -1
Since A? = i+j—k —143j 1 , A*A =
2 J -1+k
3 -2k 1+2j
2k 2 -2 |,
—14+25 2 3
10 2425 -6k 2+2i+45+2k
(AH*A%2=| 2-2j+6k 5 =3i+j+2k |,
2—-21—45 -2k 3—j5—2k 4
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det A*A = det(A%)*A* = 0, det (;’k _22’“) =2,

10 242 -6k _
det<2—2j+6k 5 )_6’

then, by Theorem 2.11, Ind A = 1 and »r = rank A = 2. We shall find the
Drazin inverse solution X% = (x%) of (4.21) by (4.18). Since

23 2+3i+5j— 17k 8+4i+ 155 + 2k
(A3*A3 = |2-3i—5j+17k 15 3—13i+2j + 5k |,
8 —4i—15j — 2k 3+ 13i —2j — 5k 15
then
sus A3 8| 23 2+ 3i45j — 17k
> }((A)A)ﬁ}_det<2—3i—5j+17k 15
B€J2,3
15 3—13i42j+ 5k
- det <3+13i—2j—5k: 15 >
23 8 4 4i + 155 +2k\
et (8—4@'— 15] — 2k 15 > =72
Further,
—11—9i — 65 + 2k 9—6i—j
D=(A*AD= | —5+5i—4j — 10k —1—2i—7j+6k |,
—10—4i+7j —3k 3—4i—T7j— 4k
and
A —11-9i—6j +2k 2+3i+5j — 17k 8+ 4i+ 155 + 2k
((AS)*AS)Al(dAl): 54 5i—4j — 10k 15 3 13i +2j + 5k | .
—10—4e+7j —3k 3+13:— 25 — 5k 15
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Therefore, finally we obtain

Sow X cder (A% 49 (d.1)) ]

t=1 ﬁEJzyg{t}

= 3)xA3) 2 -
> |as)yas) ]
BEJ2,3
i 1 2+3i+5j 17k 1 8+4z+15j+2k
7 (cdet1 (kz 5 ) (1 >)+
J 23 1 k 33— 132+2j+5k
76 (Cdet? (2—3z’—5j+17k k)“detl (1 ))+
L3
76

det 23 + cdet k =
O\ 8 — 4i— 155 — 2k 1 caet 3+132—2j—5k 1))~
3k)

1
~(7-1 _
76(7 Ti+5j

Similarly,
a2l = %(13 +29i — 135 + 13k) + 7]—6(37 +3i + 145 + 18k) — %(7+ 210 — 42§ + 10k) =
i(—33 —11i 4 35 — 23k),

x§1:716( 5—91_123_4k)+—( 5+ 18i — 5j + 8k) + 9(25+6i+28j—k):

7—6(—49 — 13i + 295 — 15k),

ad, = %(13+29¢ — 135 + 13k) + %(3” 3i + 145 + 18k) — %(Hm — 42j + 10k) =

1
76

—(—47 + 51 — 17§ + T1k),
3 —i(—5—9¢—12'—4k)+3(—5+18¢—5'+8k)+i(z5+6i+28'—k)—
3776 I 76 J 76 =
i(711+16i711j+24k)
T4 = —(13+291 — 135 + 13k) + %(37+ 3i + 145 + 18k) — %(7—1— 21i — 42 + 10k) =
%(34 + 22 — 35 + 55k).

Thus,we have the Drazin inverse solution of (4.21),

) 7T—17Ti+5j—3k  —33—11i+3j — 23k
X4 = 5 —49 — 13i 4+ 29§ — 15k —47 +5i — 175 + 71k
—11+ 167 — 115 + 24k 34+ 22i — 3j + 55k
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5. Applications of the Determinantal Representations
of the Drazin Inverse to Some Differential Matrix
Equations

In [40], applications of the Drazin inverse to linear systems of differential equa-
tions with singular constant coefficients have been done. In [41], we recently
have obtained determinantal representations of solutions of some singular dif-
ferential complex-valued matrix equations. In this chapter we extend studies
conducted in [41] from the complex field to the quaternion skew field.

5.1. Background for Quaternion-valued Differential Equations

(QDE)

Consider a quaternion-valued function of real variable, f : R — H, (¢ € R
is a real variable), such that f(¢t) = fo(¢t) + f1(t)i + f2(t)j + f3(¢t)k. The
first derivative of a quaternionic function f(¢) with respect to the real variable ¢
denote by,

It is easy to prove the following proposition on properties of the derivative
of quaternionic functions.

Proposition 5.1. Ifq : R — Handr : R — H are differentiable, then (q +
r)(t), qr(t) and, for any integer n > 1, q" are differentiable, and

(atr)(t)=d'(t) £r'(t), (5.1)

(ar)'(t) = d'(t)r(t) + a(t)r'(1), (5.2)
n—1

[a*(®)) => o (t)d (B)a™ 7 (1). (5.3)
=0

If f;(t) forall I = 0, 3 is integrable on [a, b] C R, the f(¢) is integrable and

/abf(t)dtzLbfo(t)dt+Lbf1(t)dti+/abe(t)dtﬁ/abfg(t)dtk,
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Consider a matrix valued function A (t) = (a;;(t)) € H"*" ® R, where a;;(t)
are quaternion-valued functions with the real variable ¢ for all 7, j = 1, n. Then

We need the exponential of ¢ € H that can be defined by putting,

"

expq = (5.4)

n!’
n=0

From the definition of a quaternionic exponential (5.4), we evidently have the
following properties.

Proposition 5.2. If q,r € H are such that qr = rq, then exp(¢+7r) =
(exp g)(expr).

Proposition 5.3. If q : R — H is differentiable and o' (t)q(t) = q(t)q'(t),
then
[expa(t)]’ = [expa(t)] d'(1).

In [42], the linear quaternion differential equations,

q'(t) = a(t)q(t), (5.5)
and
q'(t) = q(t)a(t), (5.6)

with the initial condition ¢(t9) = ¢o have been considered and the following
proposition has been derived.

Proposition 5.4. Let q(t) = ®;(t)qo and q(t) = qo P, (t) be solutions of (5.5)
and (5.6), respectively. If

a(t) /t a(r)dr = /t a(r)dra(t), (5.7)

to to

then
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. . t

If a is constant, then, evidently, fto a(r)dt = a(t—tp), and ®;(t) =
®,(t) = expla (i — o).

The similar result has been obtained in [43] as well. In [43], the following
nonhomogeneous differential equation corresponding to (5.5) has been consid-
ered,

q'(t) = a(t)q(t) + £(1), (5.8)

where f : [0,7] — Hand a : [0,7] — H. It has been shown, if condition (5.7)
is satisfied, then the solutions of (5.8) are given by

q(t) = exp ( /O t a(T)dT) (q(O) + /O "exp ( /O " (—a(r) dr) f(s)ds) L (te[0,T)).

5.9
In the special case when a is constant and q(0) = 1, then the solutions of (5.8)
are given by

q(t) = exp (at) (/Ot exp (—as) f(s)ds) , (te]0,T7). (5.10)

5.2. Determinantal Representations of Solutions of Some Singular
Differential Quaternion-Matrix Equations

Consider the matrix differential equation
X'+ AX =B, (5.11)

where A € H™", B € H"*" are given, X € H"*" is unknown. By (5.10) the
general solution of (5.11) is found to be

X(t) = exp (—At) (/ exp (At) dt) B.
If A is invertible, then
/exp (At)dt = A Vexp (At) + G, (5.12)
where G is an arbitrary n X n quaternionic matrix.
Since A~ lexp (A) = exp (A) A%, then the general solution of (5.11) is

X(t) = {A7! + exp (—At) G}B. If A is noninvertible, then due to [30] the
following theorem can be expended to quaternion matrices.
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Theorem 5.1. If A € H™™" has index k, then

2 k—1
/exp (At)dt = A" exp (At) + (I- AAP) [T+ A AL A Gl

2 3! k!
(5.13)

Proof. Differentiate the right-hand side of (5.13), and use the series expansion
for exp (At). O

Using (5.13) and the series expansion for exp (—At), we get an explicit
form for a general solution of (5.11),

2 k—1
X(t) = {AD +(I—- AAP)t (1 - %t + %# - ...(—1)’“’1ATtk’1) + G} B.

If we put G = 0, then the following partial solution of (5.11) is obtained,

(-
k!

X(t) = APB+(B—APAB)t— %(AB—ADAQB)tQ—f—... (A" 'B—APA*B)t*,

(5.14)
Theorem 5.2. If A € H"*"™ has index k and rank ARl = rank AF = r < n,

then the partial solution (5.14), X(t) = (zi;), possess the following determi-

nantal representation,
1. when A € H™ " is Hermitian,

£ WO (L e (a(5):
i = BEJr, nii} _ + by, - BEJIr, n{i} : .
> ‘(AkJrl) ﬁ‘ Z ’(AkJrl)ﬂ’
BEJr, n BEJIr, n
> cdet; (A'“J.r1 (B(’?”))) g
. v i J
oY PRttt o
’ > s g
BEJIr, n

k41 (7)) 8
. > ‘ cdet; (A'i (b'j ))ﬁ
(—1) Nk—1)  BEJr nfi}
P

S T I R

BEJTr n

where A'B =: B) = (/l;l(é)) e H™*" for alll = k, 2k;
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2. when A is arbitrary,

Salf) N cdet, ((a%41) (A7) (39)) 4

= > ’(A2k+1)*(A2k+1)ﬂ’
BEJr, n 7
Yol X edet, (A7) (a2 (D)) ]
b s=1 BEJr, n{s} ’ "
Y > )(A2k+1)*(A2k+1)ﬂ
ﬂeJr,n
iaz('tk) S cdet, ((A2k+1) (A1)
B I O N
2 (Y > )(A2k+1)*(A2k+1)ﬂ
BEJr, n 7
ial(f) S cdets (A2k+1) (A2k+1 (
(D" | s0-1) 571 Bednnls) ( )
k! “ > )(A2k+1) (A2k+1) )
BEJr, n ﬂ
(5.16)

where (A2F1)*AMHB = AAIB =: DO = (Jg)) € I " foralll = 1,k
and foralli,j =1,n.

Proof. 1. Using the determinantal representation of A” by (3.6), we obtain the
following determinantal representation of the matrix A” A™B := (y,;),

zn: cdet; (A{“jl (a (k>)) Z a(m>btj
vij = Zazs Za(’">btj = > = =

BETrn{i} > ‘(AkJrl)ﬁ‘
BEJIr,n
zn: cdet; (Ak.Jrl (at(kﬂn)))ﬁ by ST cdet; (A’fjl (B(lerm))) g
=1 - ' g _ Bed i}
s 3 ] > [ar) ]
BEJIr,n BETr n

forall i, j = 1,nand m = 1, k. From this and the determinantal representation
of the Drazin inverse solution (4.11), it follows (5.15).
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2. The proof of (5.16) is similar to the proof of (5.15) by using the determi-
nantal representation of A” by (3.14). U

Consider the matrix differential equation
X'+XA =B (5.17)

where A € H"*", B € H"*" are given, X € H"*" is unknown. The general
solution of (5.17) is found to be

X(t) = Bexp (—At) ( / exp (At) dt) .

If A is invertible, then by (5.12) the general solution of (5.17) is X(t) =
B{A™! + exp (—At) G}. If A is noninvertible, then an explicit form for a
general solution of (5.17) is

X(t) =

A A2 Akfl
B {AD +(I—AAP) (I -5t ?tQ + ...(—1)’“1715’“) + G} .

If we put G = 0, then we obtain the following partial solution of (5.17),

(-
k!

X(t) = BA? + (B—BAAP)i— %(BA—BA2AD)#+... (BA* "1 _BAFAP)*,

(5.18)
Theorem 5.3. If A € H"*" has index k and rank ARl = rank AF = r <,

then the partial solution (5.18), X(t) = (zi;), possess the following determi-

nantal representation,
1. when A € H™"*" is Hermitian,

)5 (2 e (a0 6):
aclyr niJ acly nij
Tij = . + |bij — t
! > (AR gl ! > [(ARF) g
acly pn a€lrpn

- (k2 o
(1) > oY (A?'H (b§'+ >)) )
61 _ @ rn

N > (A1) gl

acly pn

2+

1
2

> rdet; (A?fl (BEQM)) py
(—l)k j=1 _ a€lrn{j} ik
k! ” > l(Ak+1) gl '

acly pn
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where BAl =: B() = (Z)Z(é)) e H™" for all | = k, 2k;
2. when A € H™" is arbitrary,

£ (L, o (30 ) @) a)

Tij = Z |(A2k+1 (A2k+1)*) g|
D‘EIT‘, n
S 3 et (A% (A7) @) g )al)
b, — =t €l nis} s .
+ | bij — S [(A2K+T (AZRF1)) g
D‘EIT', n
> > rdets ((A%+1 (A2k+1)*) (&(2))) o ai’;)
1]y s=t\aelnafs) 8 2
2 ij Z |(A2k+1 (A2k+1)*) g| + ..

a€ly n

- 2k+1 (A 2k+1)* T o | (k)
(=" | yoe-1) 52::1 <QEI§L{s}rdet5 ((A (A™) ).5 (d )) a) " k
I S AT (AT

a€ly n

where BAFH A2k — BAIA =: DU = (dl(é)) € H™" foralll = 1,k
and foralli,j =1,n.

Proof. The proof is similar to the proof of Theorem 5.2 by using the determi-
nantal representation of the Drazin inverse (3.6) and (3.14), respectively. |

5.3. An Example

Let us consider the matrix equation

X'+ AX = B, (5.19)
where
1 k —i i 7
A=|-k 2 j|,B=|1 -k j
1 -5 1 1 0 1
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3 4k =31
Since A2 = —4k 6 45 |, detA = detA? = 0, and
3i —45 3
1 k 3 4k
det (—k 2) =1, det ik 6 ) = 2, then, by Theorem 2.11, Ind A =1

and 1 = rank A = 2. Since A is Hermitian and Ind A = 1, then we shall find
the solutions (z;;) € H>*3 by (5.15),

) (HMY)) 8 (2)
Tij = ﬂe%{;{z} et <A2.Z (b'] )) ﬂ-l— bij — Be Iz, s{i }Cdetl <A2 ( ’ >) t
RSN > |42
BEJ2, 3 BE T2, 3
foralli,j =1,2,3. Wehave, Y |(A2) g} —4

Be€J2, 3

ko o1+j 1—i+k
BO=AB=|2 i-2k 1+2j—k]|,
i i4k 14i—j
4k 4+3j 3—4i+3k
B® =A’B=| 6 4i—6k 4+6j—4k
—4j 4i+3k 4+3i—3j

Therefore,
1 k 4k 4k 4k
m11:Z<cdet1 (2 6)+cdet1 (_. )) ( ——[cd t1< 6)+
4k -3 1
et (4 9]ty + (5 ) o= -0k o
1 145 4k 145 —3i 1 4435 4k
T2 = 1 (cdet1 (i—2k 6) + cdet; (i+k 3 ))+(] 1 {cdetl (4i—6k 6 +

4+3j -3 1 N T . L
cdety <4i+3k 3 )])t— Z(_2+2])+< — 1[2]])26— 0.5+ 0.55 4+ (0.57) ¢;

=itk 4k l—itk —3i
x13—1<cdet1<1+2j_k 6)+Cdet1<1+ij 3)>+
3—4i+3j 4k 3—dit+4k -3\, _
( _[Cdet1<4+6j—4k 6)+Cdet1<4+3i—3j 3)])“
1
1

1
(2 + 2i + 2k) + (k -2+ 11k]) t =0.5+0.5i + 0.5k + (—0.5 — 4.5k) t;
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1 3 k 2 45 1 3 4k
To1 = 1 (cdetz (—4k 2) + cdet1 (—j 3)> + (1 1 [cdetz (—4k 6 ) +

odets (_ij ‘g)]) - 3(4) + (1 - % [—4k]) t=1+(1+k)

1 1+ i— 2%k 4y
Too = 1 (cdetz ( i Zk) + cdet1 (i—i—k 3 +
1 443 4 — 6k 45 B
(‘ _Z[Cdet2< Ak 4 — 6k>+Cdet1 <4i+3k 3 ) )t=

i(—Zi — k) + (—k - i [—4k]) t= —0.5i — ks

1 3 1—i+k 1+2j—k 4j
x23—1<cdet2<_4k 1+2j—k)+Cdet1<1+i—j 3)>+
1 3 3—4i+3k 4465 —dk 45 B
(9 Z[Cdet2<—4k 4+6j—4k>+Cdet1<4+3i—3j 3)])“
1 . 1 .
(2445 +2k) + (g -3 [4]]) t = —0.5+j + 0.5k;
1 3k 6 2 1 3 dk
m31—1<cdet2 <3i _j)—i—cdetz (—4j _J))—l—(l—z[cdetz <3i —4j)+
6 6 1 (1 .
cdeta (—4j _4].)]) t= 1(2]) + (z 1 [O]) t=0.5] + ¢
1 L+ 6 i—2k
T30 = 1 (cdetz ( ) + cdeto (—4j it k)) +
1 3 443 6 4i—6k\]Y),
(0_Z[det2 <3i 4i+3k)+‘“'det2 (—4j 4i+3k)]>t_
i(—Zi +2k) + (—% [Zk]) t = —0.5i + 0.5k + (=0.5k)¢;
1 3 1—i+k 6 1+2—k
x33_4<Cdet2<3i 14i— )+Cdet2<—4j 1+i—j)>+

1 3 3—4i+3jk 6 4+6j—4k\]), _
(Z 4[Cdet2<3i 4+3i—3j)+‘“'det2<—4j 4+3i—3j)]>t_

(=24 2i — 2j) + (z - i [2i — Zj]) t = —0.540.5i — 0.5j + (0.5i — 0.5;)t.
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6. Determinantal Representations of the W-Weighted
Drazin Inverse for an Arbitrary Matrix

The properties of the complex W-weighted Drazin inverse can be found in [1,44,
45,46,47,48]. These properties can be generalized to H. In particular, if A €
H™*™ with respect to W € H"™™ and k = max{Ind(AW), Ind(WA)},
then

Agw = A (WA)?))? = (AW)P))? A, 6.1)

AgwW = (WA)? WA, ;w = (AW)?. (6.2)

Determinantal representations W-weighted Drazin inverse of complex matrices
have been received by a full-rank factorization in [37] and by a limit represen-
tation in [49].

Through the theory of column-row determinants, a determinantal represen-
tation W-weighted Drazin inverse over the quaternion skew-field for the first
time has been obtained in [14] by the following theorem.

Theorem 6.1. Letr A € H™", W ¢ HY™™" with k =
max{Ind(AW), Ind(WA)} and and rank(AW)* = s Suppose that

B c HZESL*S) and C* € Hzfgmﬂ) are of full-ranks and
R,(B) = N, ((WA)’“) , N,(C) =R, ((AW)’“) ,
Ri(C) = N ((AW)), Ni(B) = Ry ((WA)")

Denote

WAW B
- [WAW B

Then the W-weighted Drazin inverse Agw = (a);; € H"*™ has the following
determinantal representations:

m—+n—s *
. Zk:1 Lkimkj

Qi5 = det M*M 7i = 17m7j = 17”7 (63)
or m—+n—s m* Rk,’
aij = S s L=k (6:4)

where Ly are the left (ij)-th cofactor of M*M and R;; are the right (ij)-th
cofactor of MIM*, respectively, foralli,j =1, m+n — s.
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As can be seen, the auxiliary matrices B and C have been used in the de-
terminantal representations (6.3) and (6.4). In this chapter we escape it. We
shall derive determinantal representations of the W-weighted Drazin inverse of
an arbitrary matrix A € H™*™ with respect to W € H"*™ by using the de-
terminantal representations of the Drazin inverse, of the Moore-Penrose inverse,
and the limit representation of the W-weighted Drazin inverse in some particular
case.

6.1. Determinantal Representations of the W-Weighted Drazin
Inverse by using Determinantal Representations of the
Drazin Inverse

Let A € H™*" and W € H"*"™. Denote WA =: U = (u;;) € H"*" and
AW =:V = (v;;) € H™ ™. Due to Theorem 3.6 for an arbitrary element of
the Drazin inverse U”, we have the following determinantal representations,

Sl X edet ((UHF) (U (@) ]

D1 =1 BEJr, n{t}

Uy (6.5)
S [(U2kH1)* (U2k+1) g’
ﬂeJr,n
or
i ( S rdet, <<U2k+1 (U2k+1)*> (1'11-,)) g) ug’;)
Do 5= \a€l, s} s
Yig = S [T (U g 6.6)
aEIr,n

where 1 j is the j-th column of (UZ+1)*U* = U = (4;;) € H™ ", and .
is the i-th row of U¥(U?*+1)* = U = (u;;) € H"" for all 4,j = T, n, and
r = rank UM = rank U*,

Then, by (6.1), we can obtain the following determinantal representations
of Ad,W = (afj’w) e Hmxn,

n
ai™ =" aig(ul)® (6.7)
=1
where
D, D,f
Z Ugp Up; (6.8)

Complimentary Contributor Copy



Drazin and W-Weighted Drazin Inverses Over the Quaternion ... 243

foralll, f =1,2. uﬁ ! and uﬁ 2 are represented by (6.5) and (6.6), respectively.
Similarly, using V = (v;;) € H™*™, we have the following determinantal
representations of A w,

af™ = "(vD)Day;. (6.9)
q=1

The first factor is one of the four possible equations

m

(W)@ => vt (6.10)

p=1

forall I, f = T,2. An element of the Drazin inverse V can be represented by

m

) Uitk) S cdet, ((V2k+1)* (V2k+1) t(‘?j)) g
D1 = Bedrm{t} '

Yij (6.11)
S ’(V2k+1)* (V2h+1) g’
ﬂeJr,m
or
g ( S rdet, <<V2k+1 (V2k+1)*> (\'fi,)) g) vgf)
D2 571 \a€l, m{s} -
Yij = S }(V2k+1 (V2k+1)*) g} , (6.12)

aEIr, m

where ¥, is the s-th column of (V2k+1)*VFk = V= (035) € H™ ™ and v,
is the t-th row of VF(V2kH1)* = V = (¢;;) € H™ ™ for all s,t = 1, m, and
r = rank VF*1 = rank V¥,

6.2. Determinantal Representations of the W-Weighted Drazin
Inverse by using Determinantal Representations of the Moore-
Penrose Inverse

Consider the general algebraic structures (GAS) of the matrices A € H"™*",
W € H»™, AT € H»™, W € H™" and Agw € H™*" with k =
max{Ind(AW), Ind(WA)} (e.g., [44,45,46,47)).
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Let exist L € H™*™ and Q € H"*" such that

_ Y STR —1 _ Wi 0 1
A_L[ . Aﬂ}Q ,W_Q[ 0 Wﬂ}L .

Then

1 -1
A+:Q[A61 g}Ll, W+:L[W11 O}Ql,

Wi A W)™t 0 _
Ad,W:L[( 11A11 W) O}Q L

0

where L, Q, A11, W11 are invertible matrices, and A9oWoy, Woo Aoy are
nilpotent matrices. Due to [47], the following theorem can be expanded to H.

Theorem 6.2. Let A € H™*" and W € H"™ ™ such that AysWos and
WooAogy be nilpotent matrices of index k in GAS form. Then the weighted
Drazin inverse of A with respect to W can be written as matrix expression
involving the Moore-Penrose inverse,

Agw = {(AW)’f [(AW)Q’““} ! (AW)’f} W, (6.13)

where k = max{Ind(AW), Ind(WA)}.
Similarly, the following theorem can be obtained.

Theorem 6.3. Let A € H™*" and W € H"™™ such that AooWao and
W Aogs be nilpotent matrices of index k in GAS form. Then the W-weighted
Drazin inverse of A with respect to W can be written as the following matrix
expression,

Agw =W+ {(WA)’“ [(WA)%H} ! (WA)’“} , (6.14)

where k = max{Ind(AW), Ind(WA)}.

Proof. Since Wo2A oo is a nilpotent matrix of index k, then due to GAS of
A, W and their generalized inverses, we have the following Jordan canonical
forms,

A 1WA 0 - ko (Wi1A1)* 0]
WA_Q[ 0 W22A22}Q (WA _Q[ 0 O}Q E
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[(WA)%H}+ ~Q [(W11A11)2k1 0} QL.

0

Simple computing of W+ {(WA)’“ [(WA)2~+1] * (WA)’“} proves the theo-

rem,

W {(WA)k (WA 21| ! (WA)k} -
L {W(—)il g] [(Wua&u)k 8} {(W11A(1)1)2’“ g} {(Wu(;*n)k 0] Q=
L [Wl_ll(W11A11)k(w11A11)_2k_1(W11A11)k 0} Q! =
0 0
L {Wﬁl(W&lAu)_l g] Q=

WA W)™t 0]
L[( 11 16 11) O}Q L= Auw.

O

Using (6.13), an entry afjfw of the W-weighted Drazin inverse A 4w can be
obtained as follows

m

W — i i > ol (oG )%fl’“)w; 6.15)

s=1t=1 [=1

foralli =1,m,j = 1,n. )
Denote by W;. the t-th row of VFW* = W = (w;;) € H™*" for all
t = T, m. It follows from 3" v{F'w# = w; and (3.12) that
]

. > . }rdetj (WW?), (w]) o
k), + (k)  @€lr1,nid
v W = Uy =
; ol Z > [(WWH) g

DtEITl, n

LZ et (Ww"), (#e)) @
> (WW) gl ’

DtEITI, n

(6.16)
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where 71 = rank W. Similarly, denote by v;_ the ¢-th row of V¥(V2k+1)* —.
o . *

V = (0;;) € H™ ™ forall t = 1, m. It follows from ) | vff) (vgkﬂ)) =V,
and (3.12) that ’

m m > rdet ((V%+1 (V%“)*) (Vg.%“))*) o
ngk) (U(Qk+1))+ _N ) E L m ) t _
= =t S (VA (V) g
- = acly m
S xdety ((VEFL(VEY)) () 8
DtEIr,m{t} t.

6.17)

2 (VAL (VER ) g ’

a€ly m

where r = rank W*™! = rank W*. Using (6.16) and (6.17) in (6.15), we
obtain the following determinantal representation of A g w ,

dW __
a;; o =
S8 xdety ((VEH(VE)T) (@) 8 8 xdet; (WWT), (W) &
t=1 acl, m{t} t. aelrl,n{j}
> l(VERRL(VEER T gl 3 [((WWX) g
a€ly m aelrl,n

(6.18)
Thus, we have proved the following theorem.

Theorem 64. Let A € H™" and W € H™ with k =
max{Ind(AW), Ind(WA)} and r = rank(AW )**1 = rank(AW)¥. Then
the W-weighted Drazin inverse of A with respect to W possesses the deter-
minantal representation (6.18), where V.= AW, V = Vk(VQkH)*, and
W = Viw*,

Similarly we have the following theorem.

Theorem 6.5. Let A € H™" and W € H*™ with k =

max{Ind(AW), Ind(WA)} and r = rank(WA)**! = rank(WA)*. Then
the W-weighted Drazin inverse of A with respect to W possesses the following
determinantal representation,

AW _
ag” =
> > cdet; ((W*W) ; (W.t)) g > cdety (((U2k+1)* U2k+1) (ﬁ.j)) g
t=16€Jr,, m{i} ’ BEJTr, n{t} 't
> |wew) g‘ ) ‘((U%H)* U2kl g‘
ﬁeJﬂ"l,WL BEJTr n

(6.19)
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where U = WA, U = (U1 *UF and W = W*UF.

Proof. Using (6.14), an entry a%w of the W-weighted Drazin inverse A w
can be obtained as follows

ZZZ% uf) (D) ul (6.20)
s=1 t=1 [=1

for all i = 1,m, j = I, n. Denote by W, the ¢-th column of W*U* = :W =
(th;;) € H™" for all t = T,n. It follows from S <™ = W, and (3.11)

that
Y. cdet; (W*W) , (w)

n
ﬂeJr ,m{l} k
szs Uy _Z : ugt) =

i > wew) ]
ﬂeJ’I‘l,m
3 edet (W*W),; (W)
BETry, m{i}
5 , (6.21)
> |wew) ]

ﬂeJ’I‘l,m

where r;1 = rankW. Similarly, denote by i ; the j-th column of

(U2k+1)*Uk = U = (a;;) € H™™ for all j = 1,n. It follows from
*

> (u,(l%ﬂ)) ul(]k) = and (3.11) that

1

Z( 2k+1> ]1;):

=1
n > cdety (((U%H U2k+1> ( (2k+1) ) )
Z BEJTr, n{t} g

u =
P 3 ’((U2k+1) U2k+1) ’ L
ﬂeJr,n
T cdety (((U2k+1)* U2k+1> (ﬁ.j)> g
BEr nft} !
. (6.22)
S )((U2k+1)* U2k+1) g)
ﬂeJr,n
where 7 = rank(AW)**! = rank(AW)*. Using the equations (6.22) and
(6.21) in (6.20), we obtain (6.19). O
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6.3. Determinantal Representations of the W-Weighted Drazin
Inverse in Some Special Case

In this subsection we consider the determinantal representation of the W-
weighted Drazin inverse of A € H™*"™ with respect to W € H"*"™ in a special
case, when AW =V = (v;;) € H™ and WA = U = (u;;) € H"™" are
Hermitian. Then, for the determinantal representations of their Drazin inverse
we can use (3.6) and (3.7).

For Hermitian matrix, we apply the method, which consists of the theorem
on the limit representation of the Drazin inverse, lemmas on rank of matrices
and on characteristic polynomial. By analogy to the complex case [39] we have
the following limit representations of the W-weighted Drazin inverse,

—1
Agw = lim (AIm n (AW)k+2) (AW)*A (6.23)
and _1
Agw = lmA(WA)* (AL, + (WA)*2) (6.24)

where A € R, and R, is a set of the real positive numbers.
Denote by v(k) and v( ) the j-th column and the i-th row of V¥, respec-
tively. Denote by Vk (AW)kA € H™ " and W = WAW € H"™*™,

Lemma 6.6. [f AW =V = (v;;) € H"™™ with IndV = k, then
rank (V¥2) (907) < rank (VH+2). (6.25)

Proof. We have VF*2 = VFW. Let P, (—wjs) € H™™, (s # i), be a
matrix with —0; , in the (4, s)-entry, 1 in all diagonal entries, and O in others.

The matrix P; ¢ (—w;s), (s # 1), is a matrix of an elementary transformation.
It follows that

Z oo .oa L ; 3 g
(V’““) (+%) TIPis (~ms0) = TR
: (k) (k) (k)
s#i Z VmnsWs1  «vv ppi oo Z U sWsm
S#] S#]
i—th
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‘We have the next factorization of the obtained matrix.

S oWy @§’;) o e,
s#£j s#j
> @ﬁ’fgwsl . 177(7’;) Y @ﬁ’fgwsm
Ss#j s#j
i—th
(k) _(k _(k W 0 w
R A I
— | 21’ U3 Vo 0 1 0 j—th
k) (k (k
Tl g o Bn ) \ oy o O e B
i—th
wyp ... 0O .. Wi
Denote W := 0 B O (| j — th. The matrix W is
Wp1 .. 0 ... Wom
i—th

obtained from W = WAW by replacing all entries of the j-th row and
the ith column with zeroes except for 1 in the (7, j)-entry. Since elementary

transformations of a matrix do not change a rank, then rank V'ki+2 (\7?) <

min {rank Vk, rankW}. It is obvious that

rank V¥ = rank (AW)*A > rank (AW)*+2,
rank W > rank WAW > rank (AW )*+2,

From this the inequality (3.1) follows immediately. U
The next lemma is proved similarly.

Lemma 6.7. [f WA = U = (u;;) € H"" with IndU = k, then
rank (U’H?) ' <ﬁ§k)> < rank (U’H?) ,

where UF := A(WA)F ¢ H™*",
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Analogues of the characteristic polynomial are considered in the following
two lemmas.

Lemma 6.8. If AW =V = (v;;) € H™*™ is Hermitian with IndV = k and
A €R, then

cdet; ()\Im+V’“+2>'i (?07) = At N2 i), (6.26)

where cgl 7) cdet; (V’”?).i (VF?) and

= ¥ cdeti<<Vk+2>'i<‘7.(jk)>>g

B€Js, ni{i}

foralls=1,n—1,4i,5=1,n

Proof. Consider the Hermitian matrix (tI + V’”Q)' (v (k+2)) e H"*". Taking
into account Theorem 2.13, we obtain

.1

det ()\I n V’f“) (v“?“)) = AN L A2 d,, (627

where ds = > | (Vk+2)g| is the sum of all principal minors of order
BE s, n{i}
s that contain the i-th column for all s = 1,n— 1 and d,, = det (V’”Q).
11 Wid
l
(k) -
Z Uél Wi
Consequently, we have va+2) = ‘l = ; va)wli, where VFl’C) is
— (k) -
Z ”r(d)wli

the I-th column of V¥ = (AW)FA and WAW =W = (wy;) foralll =1, n.
By Theorem 2.5, we obtain on the one hand

det (/\I + V’“”) (vff+2>) — cdet; ()\I + VW) (VFf“)) _

= Zl: cdet; ()\I + Vk“). (v(k)wlz) = Xl:cdeti (/\I + Vk+2).i (\‘f(];)) - Wy

(6.28)
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On the other hand, having changed the order of summation, forall s =1,n—1
we have

do= 3 det (V’f“)gz 3 cdet; (V’f+2

ﬂejs,n{l} ﬂEJS n{ }
)

ST0Y cdet, ((V’f”) i(vff)wzi)
BETs n{i} 1

Z Z cdet; ((V’”?) i (’\_/'(lk)>> g -y (6.29)

I Beds n{i}

By substituting (6.28) and (6.29) in (6.27), and equating factors at w;; when
[ = j, we obtain (6.26). O

By analogy can be proved the following lemma.

Lemma 6.9. If WA = U = (u;;) € H"*" is Hermitian with IndU = k and
A €R, then

rdet; (AL + UM2); (@) = pAn= 4 0Nn=2 ),

where i = S rdet, ((Uk”)j, (ﬁz(k))> ¢ and R
a€ls n{j}
rdet;(UM2);. (ﬁl(-,lg))foralls =1l,n—1landi,j=1,n

Theorem 6.10. If A € H™ ", W € H"*™, and AW € H™*"™ s Hermitian
with k = max{Ind(AW), Ind(WA)} and rank(AW )*+1 = rank(AW)* =
r, then the W-weighted Drazin inverse Ay w = a?jw € H™ ™ with respect
to W possess the following determinantal representations:

, (k)
G%W ) Bng{i} cdet; ((AW)’“Z+2 (vf )) g

S Jawrg Y
BeTr, m

where v(j ) is the j-th column of VF = (AW)F A for all j =
Proof. The matrix (AL, + (AW)’”Q)f1 € H™*™ is a full-rank Hermitian
matrix. Taking into account Theorem 2.9 it has an inverse, which we represent
as a left inverse matrix
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L1 Loy ... Lmi
-1 1 Lis Lo ... L
k42 . 12 22 m2
(AL (AW)*52) = o (\L. + (AW)F12) U
Lim Lom - Lmm

where L;; is a left ij-th cofactor of a matrix AL, + (AW)**+2. Then we have

(AL, + (AW)F+2) T (AW)FA =

m m m
Z lef).g’lg) Z lef).g’;) - Z lez’)gﬁ)
S;Ll S;Ll S;Ll
_ 1 Z LSQT)g’f) Z LSQ'Dg’;) A Z LSQT).gfL)
T det(ALn+(AW)R+2) | s=1 s=1 s=1
m m m
S Lan®® S Lont® S Loyl
s=1 s=1 s=1

By (6.23) and using the definition of a left cofactor, we obtain

cdety (AL +(AW)F+2) (vf’f)) cdety (AL, +(AW)F+2) (vfﬁ))
det (AL, +(AW)k+2) T det( ALy, +(AW)k+2)
Agw = lim
a—0 cdety (AL +(AW)E+2) (1) cdety (AL +(AW)E+2) (31
det( ALy, +(AW)k+2) T det( ALy, +(AW)k+2)
(6.31)

By Theorem 2.13, we have

det ()\Im + (AW)’““) = AT AT d N2t dy,

where ds = Be; ’()\Im + (AW)F+2) g’ is a sum of principal minors of
(AW)*+2 of order s forall s = 1, m — 1 and d,,, = det(AW)*+2,
Since rank(AW)*+2 = rank(AW)¥*! = rank(AW)* = r, then d,,, =

dm-1 = ... = dpry1 = 0. It follows that det ()\Im + (AW)’“”) = "4
AT do N2 4 d AT
Using (6.26) we have

cdet; ()\Im + (Aw)k+2> ' (V(jk)> _ Cgij))\mfl + Céij))\me +. o+ C%j)

fori = 1,mand j = 1, n, where D) — ST cdet; ((AW)’Z+2 (\72“)) g
BEJTs, m{i}
foralls =1,m — 1 and cgff) = cdeti(AW)i’.+2 (\7?).
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We shall prove that c,(jj) =0,whenk >r+1fori=1mandj=1,n.
Since by Lemma 3.2 ((AW)E.+2 (’\_/'(jk)>> < r, then the matrix

J
Consider ((AW)E.+2 (V(k)>> g, when 3 € J, ,,{i}. It is a principal sub-

((AW)’“Z+ 2 (%®)) has no more r right-linearly independent columns.

J
matrix of ((AW)’“Z+ 2 (VFJE)>> of order s > r + 1. Deleting both its i-th row

and column, we obtain a principal submatrix of order s — 1 of (AW )*+2. We
denote it by M. The following cases are possible.

o Lets =7+ 1 and det M # 0. In this case all columns of M are right-
linearly independent. The addition of all of them on one coordinate to

columns of ((AW)E-+2 (\72“)) g keeps their right-linear independence.

Hence, they are basis in a matrix ((AW)’Z+ 2 (VF?)) g, and the ¢-th
column is the right linear combination of its basis columns. From this
by Theorem 2.8, we get cdet; ((AW)’Z+2 (\_f(k)>> g = 0, when 3 €

J
Jsn{i}and s =r + 1.

elf s = r+1and detM = 0, than p, (p < s), columns are ba-

sis in M and in ((AW)]Z+ 2 (\7?)) g Therefore, by Theorem 2.8,

cdet; ((AW)ZH (‘\_/'(k)>> g = 0 as well.

J
e Ifs > r+1,thendet M = 0 and p, (p < r), columns are basis in the both
matrices M and ((AW)ZH (\7?)) g Therefore, by Theorem 2.8, we

, k+2 (S(R)\) 6 _
also have cdet; ((AW)Z (v.j )) 5="0.
J
andr +1 < s <m. Fromhereif r+ 1 < s < m, then
i = 37 cdet; (AW (v17)) =0,
BeJs, m{i}

and ¢{?) = cdet; ((AW)kl+2 (‘_’.(f)>> =0foralli,j =1,n.

Hence, cdet; (AL + (AW)’”Q)J. (\7@) = cgij))\m*1 + c;ij))\m*Q +...+

Thus, in all cases we have cdet; ((AW)kl+2 (‘\_/'(k)>> g =0,when 3 € Jg,n{i}

cﬁfj I for § = 1, m and j = 1, n. By substituting these values in the matrix

from (6.31), we obtain
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cgll>)\m’1+...+c£11>)\m’T c§1n>)\m’1+...+c£m>)\m’T
AT pdi A1 d AT T AMd A I d AT
AdW:)l\im =
’ 0
- cgmn)\m’1+...+c£m”)\m*r cgmn>)\m’1+...+c£mn>)\mfr
A pdi A1 d AT : A pdi =14 d AT
(11) (1n)
T C’I‘
T . T
C7(N'm1) C7(N'mn)
T . T
(49) k+2 (=(F)\\ 8
Here ¢, = Y. cdet; ((AW)77 (v 5 and dp =

BE€Jr, m{i}

> ’(AW)’“+2 g’ Thus, we have the determinantal representation of
BEJTr, m
A 4w by (6.30). O

The following theorem can be proved similarly.

Theorem 6.11. If A € H™*", W € H"*"™, and WA € H"*" is Hermitian
with k = max{Ind(AW), Ind(WA)} and rank(WA )*+1 = rank(WA)* =
a?j?W> € H™*™ with respect
to W possess the following determinantal representations:

r, then the W-weighted Drazin inverse Agw = (

S rdet; (WA @P)) o
dw _ a€lrn{j}
W — S (WA)MQ) : (6.32)
aEIr,n “

where @™ is the i-th row of UF = A(WA)” foralli = 1, n.

6.4. An Example

Let us consider the matrices

2;0 E 0 i 0
A:loé,W:—jk01
1k —; 0 1 0 —k
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Then
k=i 0 i o
IR . . i 7 0
ViAW = | P70 iR T g Cwa = (o koo,
k 0 7 0 00 0
itk 1—j i i—k

and rank W = 3, rankV = 3, rank V3 = rankV? = 2, rankU? =
rankU = 2. Therefore, IndV = 2, IndU = 1, and k£ =
max{Ind(AW), Ind(WA)} = 2.

It’s evident that obtaining the W-weighted Drazin inverse of A with respect
to W by using the matrix U by (6.19) is more convenient. We have

-1 i+k 0 i 2435 0 —i 0 0
ul=|o0 -1 ,UP=1(0 k& , (U =(2-3 —k ,
0 0 0 0 0 0 0 0 0

1 —2i—3k 0\ i 1+ 0
(U°)"U° = [ 2i+3k 14 JU=(U)U*=|-243] —i+6k ,

0 0 0 0 0 0
-k 3 0 2 0 —=j g
R B | =i 2 0 —2
W=l o ofWW= o 1 o |
0 1 k —j 2% 0 2
“k 1-2 0
oo o itk 0
W=WU'=1, 14 o
0 -1 0
By (6.19),
dW _
a1 =
3
> Y edet (W'W), (W) 0 edety (((U)"UP), (51)
t=1Bels 4{1} Bedz 3{t}
> |ww) i > |y
BE€J3, 4 BEJ2, 3

where

S cdets (WW), () } -

BeIz 4{1}
~j ki k=i g
0 | +cdet; |0 2 —2k | +cdety | ¢ 1 0
1 0 2k 1 0o 0 2

k
cdet; [ O
)
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> cdets (W'W) | (W) §=-2j, > cdets (W'W), (W3))§=0,
Bels 4{1} BEI3, 4{1}

3 ‘(W*W)g‘:z

BEJ3, 4

and

cdet (((U5)*U5)'1 (ﬁ.1)) g —

BEJ2, {1}
cdet; (_213]. _2i1; 3k> + cdet; (8 g) =1,
> edeta (((U9)'0%) @) 5 =0,
BEJ2, 3{2} 2
> cdets (((09)'0°) @) i=0 3 |(@) v7) 4 =1
BeJ2, 3{3} 3 BEJ2, 3
Therefore,

A (0-i)+(=25-0)+(0-0)
11 2.1

Continuing in the same way, we finally get,

=0.

0 —1 0
0 0 0

Adw = -1 51—-2k 0 6.33)
0 0 0

By (3.11), we obtain

N (—i —342j 0) . (—i -5 0)
U =10 -k , (AW)P =UuP =U? (U°)" U= 0 -k :

0 0 0
We can verify (6.33) by (6.2). Indeed,

g Ol g k 0 i 0 —i =5 0

AgwW = . -5 k0 1|=(0 -k = (AW)”
-1 5i—2k 0
0 0 o/ N0 1 0 -k 0 0 0

We also obtain the W-weighted Drazin inverse of A with respect to W by (6.7),
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then we have

0 - 0
> |~k 6+5 0

Agw = A (WA)P))"=| | sivsk 0| (6.34)
~1 5i+6k 0

The W-weighted Drazin inverse in (6.34) different from (6.33). It can be ex-
plained that the Jordan normal form of WA is unique only up to the order of
the Jordan blocks. We get their complete equality, if A, w from (6.34) be left-
multiply by the nonsingular matrix P which is the product of multiplication of
the following elementary matrices,

1 0 0 0
, 0 1 0 —k

P =Poa(=k) Pas(=1) P3a(=6) Paa(=j)= | ,  ~ _;
0 -1 1

7. Cramer’s Rule for the W-weighted Drazin Inverse
Solution

7.1. Background of the Problem

In [46], Wei has established Cramer’s rule for solving of a general restricted
equation
WAWx —b, xR [(AW)’“} : (7.1)

where A € C™*", W € C™"™ with Ind (AW) = k1, Ind (WA) = k3 and
rank (AW)* = 7y, rank (WA)*2 = ry. He proofed if b € R [(W)*2A] and
r1 = ro, then (7.1) has a unique solution, x = A4 wb, which can be presented
by the following Cramer rule,

o WAW(j — b) U, WAW U,
x]—det< Vil o 0) O)/det( v, o)’ (7.2)

where U; € CX0 7", Vi e C """ are matrices whose columns form
bases for N'((WA)"2) and N'((AW)#1), respectively.

Recently, within the framework of the theory of column-row determinants
Song [14] has considered a characterization of the W-weighted Drazin inverse
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over the quaternion skew and presented Cramer’s rule of the restricted matrix
equation,

W, AW,; XW,BW, = D, (7.3)
R (X) C Ry (AW)F)  NH(X) DN, (WyB)R2)
Ri(X) € Ry (BWa)R2),  Ni(X) DN (WA

where A € H™", W; € H™™, B € HPYY, W, € H?P,
and D € H" P with ki = max{[nd(AWl),Ind(WlA)}, ko =
max {Ind(BWs), Ind (W,B)}, and rank (AW 1)*1 = s, rank (BWy)*? =
s2. He proved that if

(7.4)

R.(D) € R, ((WlA)kl, (WQB)k2) , Ry(D) € Ry ((AWl)kl, (BWQ)k2)

and there exist auxiliary matrices of full column rank, Ly € H; 7", M} €

H 0" Ly € HI*T %, M5 € HP ™% "* with additional terms of their ranges

and null spaces, then the restricted matrix equation (7.3) has a unique solution,
X =A;w,DByw,.

Using auxiliary matrices, Ly, M1, Lo, Ms, Song presented its Cramer’s rule
by analogy to (7.2). In this chapter we avoid such approach and obtain explicit
formulas for determinantal representations of the W-weighted Drazin inverse
solutions of matrix equations by using only given matrices.

7.2. Cramer’s Rules for the W-weighted Drazin Inverse Solutions
of Some Matrix Equations

Consider the matrix equation (7.3) with the constraints (7.4). Denote ADB =:

D = (Jlf> € H™X4, and VDU = D = (c?lf) € H™X4, where V :=
(AW)" A, U := B(W,B)k2,

Theorem 7.1. Suppose D € H"*P, A € H™*", W; € Hﬁlxm with
ki = max{Ind(AW1),Ind (W1A)}, and B € HP*I, Wy € HL?
with ko = max {Ind(BWs), Ind (W2B)}, where rank (AW;)¥1 = s,
rank(BWQ)k2 = S9. IfRT(D) € R, ((WlA)kl,(WQB)k2), RI(D) S
Ri (AW 1)k (BWy)*2), then the restricted matrix equation (7.3) has a
unique solution,

X =A;w,DByw,, (7.5)
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which possess the following determinantal representations for all i = 1,m,
J=Laq
i)
m  q ~
zig =Y > () Pdip(uf)®, (7.6)
=1 f=1

where (v7) = VP is the Drazin inverse of V.= AW and (v2)®) can be
obtained by (6.10), and (u?j) = UP is the Drazin inverse of U = W,B and
(u2)2) can be obtained by (6.8).

qj
ii) If AW, € H™*"™ and WsB € H9*? are Hermitian, then

3 cdet; ((AVVl)’.Ci'+2 (d%>> g

BEJTsy, m{i}
g = ki+2 B ko2 o’ (7.7
> |awyR el s [(waB)R gl
ﬂejsl,m a6152,q
or
S xdet; (WaB)J*2(df))
a€lsyq{j} '
Tij = , (7.8)
3 (Awl)k1+2g 3 ’(\7\]2]3)162+2g
ﬂejsl,m a6152,q
where
% = [ 3 rdet; (WoB)2(dy)) | e B, t=Tm (7.9)
a€lsy o {5} @
dt = Y cdeti (AWM () ) € HP, 1=Tg (7.10)
BEJTsy, m{i}

are the column vector and the row vector, respectively. d; and a,j are the i-th
row and the j-th column of D foralli =1,n, j = 1, p.

Proof. The existence and uniqueness of the solution (7.5) can be proved similar
as in ( [14], Theorem 5.2).
To derive Cramer’s rule (7.6) we use (6.1). Then, we obtain

X = ((AW})P))” ADB (W,B)?))”. (7.11)
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Denote ADB =: D = (diy) € H™4, V = AWy, and U := W,B. The
equation (7.11) can be written component-wise as follows

vy = ZZ W1y bd W2) ZZ (Z alt) dis (le bsf(u?j)@))

s=1 t=1 s=1t=1

By changing the order of summation, from here it follows (7.6).

i) If A € HT*", B € HP Y and AW, € H™ ™ and WoB € H2*? are
Hermitian, then by Theorems 6.10 and 6.11 the W-weighted Drazin inverses
Aqw, = (af"™) € B and By, = (65"*) € HP posses the follow-
ing determinantal representations respectively,

> cdet; ((AW1)HP (7)) ]
dW1 — BEJsl,m{i}

a T : (7.12)
> |awyhe
BEIr, m
where ¥ ; is the j-th column of V = (AW;)* A forall j = T, m, and
> rdet; (WoB)P (@) &
o€l j
piWe — 2Ehall) — , (7.13)
> |[(W2B)» ™ g
OLEIsg,q

where ;. is the i-th row of U = B(W3B)*2 for all i = T, p. By component-
wise writing (7.5) we obtain,

Tij = Z (Z a Wldt5> b (7.14)

s=1

Denote by d_, the s-th column of VD = (AW{)" AD =: D = (CZU) e H™*P
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forall s = 1, p. It follows from ) v ;d;s = d , that
t

> cdet; ((AW1)I?1i+2 (V.t)) g

- "\ BETsy, m i
Do al e = 37 iy =
=1 =1 > ‘(AW1)I“+2 g‘
ﬁerl,nL
S edets (AW (w0) frd X edets (AW ()3
ﬁerl,ﬂL{i} t=1 o ﬁerl,m{i}
ORNONVAREH > [aw )t gl
BEJsy, m BEJTsy, m

(7.15)

Suppose e and e are respectively the unit row-vector and the unit column-
vector whose components are 0, except the s-th components, which are 1. Sub-
stituting (7.15) and (7.13) in (7.14), we obtain

> cdet (AW (A0)) ] 8 rdet; (W2B)2 ¥ (n,)) &

S z”: BEJsy, m i} a€lsy o{i}
iy —
= S [awyre ] > |(WaB)t2g
BEJTsy, m a€lsy, q
Since

d.S = Z e.tdt57 ﬁ& = Z 'aslel., Z dtsﬂsl = dtl7 (716)
t=1 =1 s=1

then we have

Tij =

M
NIE
M=

> cdet (AW (1)) fduii 3 xdet; (W2B)P* ¥ (e)) &
1B€T0 m i} aeliy qli}

S |aw)R gl s |(WaB)R g

BEJsy, m a€lsy, q

o
Il
—
o~
Il

11

S cdeti (AW)" (e.0)) fdn X rdet; ((WaB)12*(er)) &

18€Jsq, m{i} a€lsy q{i}

S |(waB) g

a€lsy, g

NgE
M=

o
Il
-
Il

> |awnyht2 g

BETe . m

(7.17)
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Denote by

d4 = Z cdet; ((AWl)I.ﬂz‘+2 (a'l)) b=
ﬁerl,nL{i}

i > cdeti (AW 7 (e.1)) fdu

t=1 QEJsl, mii}

the I-th component of a row-vector d® = (d4, ..., d;%) forall [ = 1, q. Substi-
tuting it in (7.17), we have

q
3 dﬁ >, rdet; ((WQB)§2+2(9L)> a
=1 a€els,q{j} '

> |awyR el s [(waB) P a|
BEJTsy, m a€lsy q

xij =

q
Since > dfe;. = dA, then it follows (7.8).
=1
If we denote by

q a
dg= du Y rdet; ((W2B)??+2(el-)) -
=1

. a
= aelsg,q{]}

Z rdet; ((WzB)?Z,H(at.))a

X a
aelsg,q{]}

the ¢-th component of a column-vector d?‘j = (d]f‘j7 s d%)T forallt = 1,n
and substituting it in (7.17), we obtain

S8 cdet; (AW (o)) dB
t=18eJs;, m{i} ! fo

xij =
> |ana)g] 2o imBg
ﬂEJrl,n aelrg,p
n
Since Y- edp; = dB, then it follows (7.7). O

t=1

Remark 7.2. To establish the Cramer rule of (7.3) we shall not use the de-
terminantal representations (6.30) and (6.30) for (7.5) because corresponding
determinantal representations of it’s solution will be too cumbersome. But they
are suitable in the following corollaries.
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Remark 7.3. In the complex case, i.e. A € C"™*", W1 € CI*™, W € CLe,
and D € C™"*P, we can substitute usual determinants for all correspondmg row
and column determinants in (7.6), (7.7) and (7.7).

Because in the case ii), the conditions AW, € H™*™ and WB € HI*?
be Hermitian are not necessary, then we have,

(AW1)"*2 (aB) |

S BEJTsy, m{i}
) Z ’(AW )k1+2 5 Z ’(W2B)k2+2 g )
ﬂejsl,m 04€152,q
or
> [(WaB)P(af)e
Tis — a€lsy,q{s}
J Z (AW )k1+2 5 Z ’(WQB)’C2+2 g )
ﬂejsl,m 04€152,q
where
dai={ > ’(W2B)§?”(at.)z eC™, t=Tn
a€lsyq{j}
d;A: Z (AW )k1+2 ’ E(Clxq7 I1=T,q
BeJsy, m{i}

are the column vector and the row vector, respectively. d, and a,j are the i-th
row and the j-th column of D for all i = 1,n, j = 1,p. These determinantal
representations are most applicable for the complex case.

Corollary 7.1. Suppose the following restricted matrix equation is given,
WAWX =D, (7.18)
R.(X) C Ry ((AW)), M(X) DN ((WA)F), (719

where A € H™", W € H™ with k = max {Ind(AW), Ind (WA)}, and
D € H™? . If R.(D) C R, ((AW)*) and Ni(D) > N; ((WA)¥), then the

restricted matrix equation (7.18-7.19) has a unique solution,

X = AqwD, (7.20)
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which possess the following determinantal representations for all 1 = 1, m,
J=Lp
i)
Tij =
S Y cdeti (W'W), (W) ¥ cdet, (@) u™+) (@)}
t=1 ﬁEJﬂ"l mi{i} ’ BEJTr, n{t} R
S jwew gl x [usey o g
ﬁeJﬂ"l,WL BEJTr n

(7.21)

where U = WA, d] is the j-th column of D = UD = (U2+1)*UkD,
W = W*U¥, and r = rank(WA )**+! = rank(WA)*.

ii)
m
zij = () Pry, (7.22)
q=1
where (v£)<2) can be obtained by (6.10) and AD = R = (r4;) € H™*P.

iii) If AW € H™*™ is Hermitian, then

det; ((AW)*T2(f,)) 4§
o — QEJrz,;n{i}C ) (( o J)) ’
iy =

> |aw)eg

B
BEJTr, m

(7.23)

where £ j is the j-th column of F = VD = (AW)*AD.
Proof. Toderive a Cramer’s rule (7.21), we use the determinantal representation
(6.19) for Ag . Then

P
_ dW 5
mij—§ a;y ds;
s=1

Y Y cdeti(WW), (W)l 2 cdets (U ) U #9) @
Xp: t=18€Jr,, m{i} BETr, n{t} it s i
X [Wew) gl x |(uey Uz |
QEJT'I,WL BEJTr n
(7.24)
Denote D = UD = (U%*1)*U*D, where D = (

ci ) H"™*P. Since

p A
Z s =d;
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where 61 j 1s the j-th column of ]f), then (7.21) follows from (7.24).
Cramer’s rules (7.22) and (7.23) immediately follow from Theorem 7.1 by
putting W; = W, WyB =1. O

Remark 7.4. In the complex case, i.e. A € C™", W € CI*™, and D €
C"*P, we substitute usual determinants for all corresponding row and column
determinants in (7.21), (7.22), and (7.23).

Note that in the case iii), the condition AW € C™*™ be Hermitian is not
necessary, then in the complex case (7.23) will have the form

k+2 o \) B
., (W) (£,)) §|

Z )(AW k’+2
ﬂeJr, m

xij =
g

where £ ; is the j-th column of F = VD = (AW)*AD.
Corollary 7.2. Suppose the following restricted matrix equation is given,
XWBW =D, (7.25)
Ri(X) C Ry ((BW)’f) , N (X) DN, ((BA)’f) : (7.26)

where B € HP*4, W € H} P with k = max {Ind(AW), Ind (WB)}, and
D € H™*?. [fRy(D) C R, ((Bw)k) and N;,(D) > N, ((WB)*), then the

restricted matrix equation (7.25-7.26) has a unique solution,

X =DBgw, (7.27)
which possess the following determinantal representations for 1 = 1,n, j =
Lq,

i)
Tij =
2 S rdet (VEFL(VEDT) (di)) s S xdet; (WWY), (W) @
=lacl, p{l} L aclry q{i} '
> VAR (VEEDT gl 3 I(WWH) g
a€ly m aelrl,n

(7.28)
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where V.= BW, d;_is the i-th row of D = DV = DVF(V2+1)* ) is the
I-th row of W = VFW*, and r = rank(BW)**1 = rank(BW)*.
ii)
q
vy =y li(uf)?, (7.29)
=1

where (u@)m can be obtained by (6.8) and DB = L = (l;;) € H"*.
iii) If WB € H?*Y (s Hermitian, then

5> rdet; ((WB)F2(g,)) &
2y = 2Ehrald} . (7.30)

> |(WB)*?q

aEIr, q

where g;_is the i-th row of G = DB(WB)* foralli = 1,n.

Proof. The proof is similar to the proof of Corollary 7.1 in the point i), and
follows from Theorem 7.1 by putting Wy = W, AW, = 1. O

Remark 7.5. In the complex case, i.e. B € CP*9, W ¢ Cgf”, and D € C**P,
we substitute usual determinants for all corresponding row and column deter-
minants in (7.28), (7.29), and (7.30). Herein the condition WB € C"*" be
Hermitian is not necessary, then in the complex case (7.30) can be represented
as follows,
> |[(wWB) () &
aEIr,q{j}
> [(WB)* gl

aEIr, q

where g;_is the i-th row of G = DB(WB)* foralli = 1, n.

xij =

7.3. Examples

1. Let us consider the matrix equation

WAWX =D (7.31)
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with the restricted conditions (7.19), where W and A are the same as in Exam-
ple 64., and

ki
D=1[:i —j
1 —

Therefore, the matrices V. = AW, U = WA, (U5)* U, W*, W*W, W =
W*U? are the same that in Example 64. as well, and

) i—j—k —j
D=(U°)'U’D = [ 1+3i+6j—2k 4i—2k
0 0
So, by (7.21)
3 N
> > cdet1((W*W)'1(vAv,t))g > cdett(((U5)*U5)'t(d,1))g
o t=18el3 4{1} BeJ2, 3{t}
> jwew) g s fu)un) g
BEJ3, 4 BEJ2, 3
where
Y cdeti (W*W)  (W.r) § =
Belz 4{1}
ki —j ki g k —j j
cdet;y [0 2 O | +cdet;y |O 2 —2k| +cdet; |72 1 0] =0,
i 0 1 0 2t 1 0O 0 2

> cdety (W*W) 4 (W) § = —2j,
Belz 4{1}

3 edety (W'W), (W) 5 =0, 3 ’(W*W) g’ — 9,
Bels 4{1} BEJ3, 4

and

> edets (((U7)07) (@) =

BeJa, 3{1}

i—j7—k —21 — 3k i—j—k 0y _ . .
cdet <1+3i+6j—2k 14 +cdet = —-2i1—j—k,
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> cdets (((U7)° U5>'2 () =5

BeJa, 3{2}
S edets (09 0%) (@) f=0. 3 [((07)0°) ] =1
BEJ2,3{3} 3 BEJ2,3
Therefore,
0-(=2i—j—k)+(-2j)-7+0-0
T = =1,
2-1
0-(—2+4+2j)+(-25)-i+0-0
Tri2 = 2.1 :k7
27 (=2i—75—k 107 — 4k) - j .
g =B 2] 2R H A0 AR JH0-0 gy
2-1
@2:2]-(—2+2j)+2(1(iz—4k)'z+0-0:_7_4j7
106 (=2t — 35—k -5+ 0-0
gy =200 (72 J2 1)+*7 I 954555k
10 - (=2 + 24 '
gy =0 (24 2) 41400 g0
21
We finally get,
1 k
X = 1+i+ 7k —7 -4y
9.5+ 55 —5k —10¢+ 9.5k
2. Let now we consider the matrix equation
W1 AW XWyBW;, =D, (7.32)
with the constraints (7.4), where
k 0 ¢ O Ig _k:j (1) k —i
A= _j k0 1 7W1: i 0 0 7W2_ j 0 )
0 1 0 —k 0 1 —k 0 1
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[k j O ke o0
B_<j 0 1)’D_ 0 j
0

Since the following matrices are Hermitian

2 i 0 0 —i —i
V=AW, =[-i -1 0|, U=Wy,B=[i -1 0 |,
0 0 0 i 0 -1

then we can find the W-weighted Drazin inverse solution of (7.32) by its deter-
minantal representation (7.7). We have

k1 = max {Ind(AW,), Ind (W1A)} =1,
ko = max {Ind(BWy), Ind (W3B)} =1,

and s; = rank (AW;) = 2, s9 = rank (W3B) = 2. Since

—-13 & 0 0 -3 -3
(AW ) = -8 -5 0] ,(WyB)*= (3 -3 o0 |,
0 0 0 3t 0 3
then
> }(AW1>3§}=17 > ’(W2B)33 =—27.
B€eJ2, 3 acls 3
Therefore,

2i+j —-T+k —5+2k
D=AW,ADBW;B= | -1+k —5i—j —4i—2j
0 0 0

By (7.9), we can get

36i — 9j 27 9 — 9k
dB=|-27-9k|, dB8=|-18i|, dB=|9i+3j
0 0 0
Since
36i—95 8 0
(AW,)?, (dB) = | —27—-9k -5 0],
0 0 4
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then finally we obtain

cdet; ((AW)?, (aB))
BE Iz, 3{1} 361 — 275  —41+3j
T = = = ,
3 _
> (AW ¥ [(WaB)? g 27 3
BeJ2, 3 a€cly 3
Similarly,
927 8 99k 8i
| odets (—1&' —5) e <9i 3 —5)  _o—k
2 97 N 97 -9
~13 36i—9j 13 —27
cdets (—8i 27— Qk) _ —7-5k B cdets (—Si —18i) =y
e —27 ~ T3 T —27 3
13 —9- 9k
odet (—Si 9i + 3j ) 15i — 11§
T23 = = , 31 = 32 = x33 = 0.

27 9

So, the W-weighted Drazin inverse solution of (7.32) are

~12i4+95 3 —9—Tk
X =5 | -21-15k —6i 15i— 11
0 0 0

Conclusion

In this chapter, we have obtained determinantal representations of the Drazin
and W-weighted Drazin inverses over the quaternion skew field. We have de-
rived determinantal representations of the Drazin inverse for both Hermitian and
arbitrary matrices over the quaternion skew field by the theory of column-row
determinants recently introduced by the author. Using obtained determinantal
representations of the Drazin inverse we have get explicit representation formu-
las (analogs of Cramer’s rule) for the Drazin inverse solutions of the quater-
nionic matrix equations AXB = D and, consequently, AX = D, XB =D
in both cases when A and B are Hermitian and arbitrary. We also have obtain
determinantal representations of solutions of the differential quaternion-matrix
equations, X' + AX = B and X’ + XA = B, where A is noninvertible.
Also, we have obtained new determinantal representations of the W-
weighted Drazin inverse over the quaternion skew field. We have gave de-
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terminantal representations of the W-weighted Drazin inverse by using previ-
ously obtained determinantal representations of the Drazin inverse, the Moore-
Penrose inverse, and the limit representations of the W-weighted Drazin in-
verse in some special case. Using these determinantal representations of the
W-weighted Drazin inverse, explicit formulas for determinantal representations
of the W-weighted Drazin inverse solutions of the quaternionic matrix equa-
tions WAWX = D, XWAW = D, and W; AW XW;BW;,; = D have
been obtained.
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